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REVIEW

Abstract Water quality monitoring is a fundamental component of sustainable management of water 
resources. This review outlines the progression of water quality assessment, transitioning from traditional 
methodologies to advanced technologies such as remote sensing, nanotechnology, sensor networks, and 
artificial intelligence. It emphasizes the transformative potential of integrating big data analytics to enhance 
accuracy, transparency, and decision-making processes. The study addresses critical global issues, including 
transboundary water conflicts, complexities in data management and the emergence of contaminants. 
Additionally, the study employs case studies to illustrate the practical application of these technologies, 
offering actionable recommendations for their integration into sustainability governance frameworks. This 
review highlights the interconnectedness of advanced technologies, community engagement, and regulatory 
frameworks in pursuing sustainable water resource management, serving as a guide for researchers, 
policymakers, practitioners and communities dedicated to preserving water resources.

Keywords Water Quality . Contaminants . Advanced Technologies . Community Engagement . Sampling 
Techniques . Environmental Sustainability

Introduction

Water, regarded as the essence of life, is crucial for sustaining ecosystems, supporting agriculture practices, 
and fulfilling the needs of an expanding global population. The assurance of availability of clean and safe 
water is fundamental to public health, economic development, and environmental sustainability (UN-Water 
2016). Rapid urbanization, industrialization, modern agricultural practices, and climate change have sig-
nificantly contributed to the degradation of WQ. Timely monitoring is important for identifying potential 
threats and safeguarding water resources (Aryal 2022). In light of these challenges, the establishment of 
effective WQM systems is imperative to detect and mitigate contamination, thereby protecting both human 
health and the environment.

Water pollution poses serious risks to both ecosystems and human health, serving as a primary contrib-
utor to the proliferation of waterborne diseases like cholera and dysentery, which can lead to severe illness 
and mortality (Bashir et al. 2020). The quality of water resources is perpetually threatened by a variety of 
anthropogenic activities, including industrial discharges, agricultural runoff, urbanization, climate change, 
and population growth. Industrial pollution, characterized by the discharge of harmful pollutants from 
manufacturing facilities, has a profound impact on WQ (Chathuranika et al. 2023). Agricultural runoff 
introduces pesticides, fertilizers, and sediments into aquatic systems, resulting in nutrient pollution and 
increased turbidity. Urbanization alters land use patterns, heightens stormwater runoff, and contributes 
to contamination from residential areas (Kaur and Sinha 2019). Climate change exacerbates WQ issues 
through transformed precipitation patterns, rising temperatures, and extreme weather events. Additionally, 
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population growth amplifies the demand for water resources and intensifies WQ challenges due to insuffi-
cient sanitation infrastructure. 

Although traditional WQM methods are recognized for their accuracy, they often fall short in address-
ing widespread and complex challenges due to their labor-intensive and time-consuming nature, as well as 
their limited spatial and temporal coverage (Essamlali et al. 2024). The last few decades have seen a surge 
in technological innovations designed to revolutionize WQM. Advanced technologies and methodologies 
now present real-time, high-resolution data collection and analysis. Innovations such as RS, automated 
sensors, biosensors, and advanced data analytics, including AI and ML, are transforming water resource 
management (Zainurin et al. 2022). This advanced system is capable of detecting contamination, monitor-
ing environmental changes, and predicting risks, while also incorporating stakeholder input for communi-
ty-based monitoring. It effectively addresses global water challenges, including scarcity and contamination, 
by emphasizing cost-effective and scalable solutions that enhance proactive resource management (Essam-
lali et al. 2024). 

Despite facing challenges such as high costs, inadequate infrastructure, and complex policy barriers, 
the researchers have successfully integrated theoretical advancements with practical solutions, particularly 
in developing regions where WQ issues are pressing. These countries frequently encounter significant WQ 
challenges due to limited resources and outdated monitoring systems (Kirschke et al. 2020). The adaptive 
governance framework proposed in this research offers a flexible, context-specific approach to water man-
agement that can be tailored to diverse ecological, economic, and social conditions (Akamani 2023). By 
promoting collaborative decision-making among stakeholders, including local governments, communities, 
and international organizations, the framework ensures equitable access to clean water. Engaging multiple 
parties enhances accountability and aligns water management strategies with the specific needs of affected 
populations.

This review aims to provide an overview of the recent innovations and techniques in WQM. It inves-
tigates technological advancements in monitoring tools and methods, evaluates their applications and 
effectiveness, and identifies the challenges and opportunities associated with the implementation of these 
technologies for sustainable water resource management. Through the analysis of case studies and recent 
research, this article presents a comprehensive perspective on the current status of WQM and suggests 
future directions for improving the sustainability of water resources. These objectives are intended to 
assist researchers, policymakers, and practitioners in advancing WQM to protect our planet’s most vital 
resource.

Water quality parameters

WQ is predominantly evaluated through an analysis of its physical, chemical, biological, and radiological 
characteristics. These parameters provide comprehensive insights into the health and usability of aquatic 
environments. Each category encompasses specific parameters that are crucial for the assessment of WQ. 
The interactions among these parameters highlights the intricate nature of aquatic ecosystems.
Water temperature plays a significant role in influencing biological, chemical, and physical processes with-
in aquatic systems. It affects gas solubility, the metabolic rates of aquatic organisms, and the distribution 
of species. Generally, warmer water holds less DO, which is vital for the survival of aquatic life, hence 
rendering extreme temperatures potentially harmful to these organisms (EPA 2012). Elevated temperatures 
are detrimental to aquatic organisms compared to lower temperatures, as they lead to a substantial reduction 
in DO levels.

The coloration of water serves as a visual indicator of its quality, which is influenced by the presence 
of organic materials, pollutants, and minerals. Natural factors, such as DOM, as well as human activities, 
industrial discharges, can alter the color of water (Goerlitz and Brown 1972). Turbidity, defined as the 
clarity or cloudiness of water resulting from suspended particles, can affect light penetration, photosynthe-
sis, oxygen production, and the feeding behavior of aquatic organisms (Omer 2019). Conductivity, which 
measures the ability of water to conduct electrical current, is correlated with the concentration of dissolved 
salts and minerals. It serves as an important indicator of WQ by revealing the presence of pollutants or 
changes in salinity levels (Tutmez et al. 2006). TDS, which include both inorganic and organic substances 
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such as minerals, salts, and metals, significantly influence the taste of water and its suitability for drinking, 
irrigation, or industrial applications, consequently making it a critical parameter for monitoring.

Chemical parameters are utilized to quantify various substances present in water, thereby indicating its 
chemical composition. These parameters, which include pH, DO, nutrients, heavy metals, and other con-
taminants, are important for evaluating the suitability of water for diverse applications and for identifying 
potential health risks (Chapman 1996). The pH level serves as an indicator of the water’s acidity or alkalin-
ity, which in turn influences mineral solubility and biological activities. Maintaining appropriate pH levels 
is essential for facilitating chemical reactions and ensuring effective water treatment processes (Saalidong 
et al. 2022). DO is crucial for the survival of aquatic organisms, as it reflects the water’s capacity to sustain 
life. Low levels of DO, often resulting from organic pollution and eutrophication, can lead to the mortality 
of aquatic organisms (Chapman 1996).  Research has demonstrated that colder lakes and streams are ca-
pable of retaining higher levels of DO compared to warmer waters, which is vital for  maintaining aquatic 
health (Omer 2019).

Nutrients such as nitrogen and phosphorus are required for plant growth; however, their excessive 
presence can lead to eutrophication, resulting in algal blooms and subsequent oxygen depletion (Rodrí-
guez-López et al. 2023). Heavy metals, including lead, mercury, and cadmium, present significant health 
risks due to bioaccumulation and direct toxicity, often entering aquatic environments through industrial 
discharges and mining activities (Zhang et al. 2023). The radiological characteristics of water are associated 
with the presence of radioactive elements and substances, which can occur naturally, like those from geo-
logical formations, or result from human activities such as nuclear power generation (NAP 1997). Moni-
toring these parameters is important for ensuring public safety, as radioactive contamination can have long-
term health consequences. Moreover, chlorine and chloramines are frequently employed as disinfectants in 
water treatment processes. Regular monitoring of their concentrations is necessary to ensure their efficacy 
in eliminating harmful pathogens while preventing excessive levels that could lead to taste and odor issues 
or adverse health effects (Lanrewaju et al. 2022).

Khalik et al. (2022) reported that the pH values in the Bengkulu River ranged from 5.8 to 8.4, while in 
the Nelas River, Indonesia, the pH values ranged from 5.8 to 8.1. TDS levels were found to be between 32 
and 352 mg/L in the Bengkulu River and between 15 and 492 mg/L in the Nelas River, all of which fall 
within established quality standards. The study indicated a significant variation in TSS in the Bengkulu 
River, with values ranging from 1 to 4,220 mg/L, suggesting the presence of pollution. In contrast, TSS 
in the Nelas River ranged from 1 to 249.5 mg/L, which complies with irrigation standards. In addition, oil 
and grease concentrations in the Bengkulu River were reported to range from 0.0 to 4,998 mg/L, while in 
the Nelas River, they ranged from 0.0 to 897 mg/L, both exceeding quality standards, likely attributable to 
domestic activities and industrial discharges. Das (2017) documented a considerable variation in EC values 
in Chimdi Lake, Sunsari District, Nepal, with measurements ranging from 312.2 to 377.8 μS/cm. Addition-
ally, TDS values in Chimdi Lake were reported to range from 189.2 to 227.3 mg/L.

 Khalik et al. (2022) reported that the DO levels in the Bengkulu River ranged from 3.1 to 8.4 mg/L, 
while in the Nelas River, they ranged from 2.7 to 12.9 mg/L. However, a declining trend in DO values 
suggests an increase in pollution and a deterioration in WQ. BOD levels were observed to range from 
0.3 to 29 mg/L in the Bengkulu River and from 0.6 to 11.8 mg/L in the Nelas River, with elevated values 
downstream attributed to organic accumulation. COD values exceeded the established standard of 10-80 
mg/L, with measurements ranging from 1 to 300 mg/L in the Bengkulu River and from 3.5 to 64 mg/L in 
the Nelas River, indicating pollution stemming from residential and industrial sources. Additionally, as a 
consequence of mining and industrial activities, SO4

-2 levels in the Bengkulu River varied from 1 to 290 
mg/L, while the Nelas River recorded a peak of 1400 mg/L in 2019. NO2

- levels were found to range from 
0.0 to 0.02 mg/L in the Bengkulu River and from 0.0 to 0.04 mg/L in the Nelas River, which are close to the 
quality standard of 0.06 mg/L, underscoring the necessity for continuous monitoring.

Pandey and Shakya (2011) found that Fe concentrations in spring water varied between 0.15 and 5 
mg/L, whereas Mn levels in groundwater ranged from 0.03 to 0.1 mg/L. Additionally, Das (2017) doc-
umented NO3

- concentrations in Chimdi Lake, which were found to be between 0.045 and 0.0655 mg/L. 
These values are significantly lower than the concentrations of 5-25 mg/L observed in springs and 5-50 
mg/L in groundwater, as reported by Pandey and Shakya (2011) in the central development region of Nepal. 
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There are various  VOCs contaminants found in water, including 1,1,1,2-tetrachloroethane, 1,1,2,2-tet-
rachloroethane, styrene, and tetrachloroethylene. These substances pose significant risks to public health 
and raise environmental concerns due to their widespread use in industrialized nations. Among the most 
alarming organic contaminants are aromatic hydrocarbons and chlorinated hydrocarbons (Lin and Li 2010). 
Specific VOCs, including tetrachloroethylene and trichloroethylene, have been identified as contaminants 
of groundwater, while PAHs resulting from the combustion of organic materials have been detected in 
surface water. The occurrence of organic chemical pollution can be attributed to various mechanisms, 
including natural production by aquatic microorganisms (2-methylisoborneol, geosmin, microcystin) and 
the discharge of industrial waste. Common pollutants encompass VOCs, pesticides, phenolic compounds, 
phthalates, and nitrogen compounds, with chlorination by-products such as trihalomethanes and haloacetic 
acids also identified in drinking water (Tsuchiya 2010). In response to the health implications associated 
with these contaminants, the WHO has established guidelines for organic constituents, pesticides, and dis-
infectant by-products in drinking water. Moreover, the presence of pharmaceuticals, personal care products, 
and perfluoroalkyl substances has emerged as a significant environmental concern.

The biological characteristics of aquatic ecosystems are primarily characterized by the presence of 
microorganisms, algae, and various aquatic life forms. Pathogenic microorganisms, including bacteria, 
viruses, and parasites, have the potential to contaminate water sources and contribute to the spread of 
diseases. Algae, while naturally occurring, can experience excessive proliferation due to nutrient pollu-
tion, leading to harmful algal blooms. As well, the diversity and health of aquatic organisms, such as fish 
and invertebrates, serve as indicators of overall WQ, reflecting both physical and chemical conditions 
(WHO 2021). Phytoplankton, a type of algae that produces oxygen through photosynthesis, constitutes 
the foundational level of the aquatic food web, while zooplankton, which are small aquatic animals, 
provide a food source for larger organisms and play a significant role in nutrient cycling. Monitoring 
fish populations and macrophyte communities is essential for assessing the impacts of pollution, habitat 
degradation, and changes in nutrient levels on these organisms and their ecosystems (Naselli-Flores and 
Padisák 2023).

Microorganisms, including bacteria and viruses play an important role in aquatic ecosystems. Certain 
bacterial populations serve as indicators of fecal contamination and the presence of pathogens, while others 
contribute positively to water treatment processes (Cabral 2010). The monitoring of microbial populations 
is critical for assessing WQ and evaluating the effectiveness of treatment methods. The assessment of 
biodiversity within aquatic ecosystems is vital for understanding their ecological health and resilience. 
Variations in biodiversity patterns can signal disturbances in WQ and ecosystem functionality (Tampo et 
al. 2024). Benthic macroinvertebrates, such as mollusks, worms, and crustaceans, are used as bioindicators 
due to their differential tolerance to pollution and habitat degradation. Uprety et al. (2020) reported that the 
Terai region of Nepal exhibited the highest mean levels of E. coli at 153 CFU/100 ml, whereas the hilly 
region recorded the highest mean TC levels at 1411 CFU/100 ml. Additionally, Pandey and Shakya (2011) 
documented FC levels in the central area of Nepal ranging from 0 to 212 CFU/100 ml in spring water and 
from 0 to 354 CFU/100 ml in groundwater. Das (2017) indicated that the water from Chimdi Lake exceeded 
the bacterial contamination guidelines established by the WHO. In Indonesia, Khalik et al. (2022) identi-
fied elevated TC counts in the Bengkulu River (33-16,000 MPN/100 mL) and the Nelas River (95-18,980 
MPN/100 ml), indicating persistent pollution.

Water quality index

The WQI is a comprehensive tool used to assess the overall quality of water in aquatic environments. This 
method incorporates multiple parameters, including pH, DO, turbidity, TDS, NO3

-, PO4
-3, and various other 

contaminants, into a single numerical value that reflects the health of the water resource. By condensing 
complex data into a more accessible format, the WQI facilitates understanding among stakeholders such as 
policymakers, environmentalists, and the general public regarding WQ. The WQI is imperative for identi-
fying sources of pollution, monitoring temporal changes, and informing water management practices, thus 
enabling stakeholders to make informed decisions aimed at protecting and enhancing water resources.

The WQI was first introduced by Horton (1965), who assessed WQ using various parameters, including 
sewage treatment, DO, pH, coliforms, EC, CCE, alkalinity, Cl-, temperature, and visible pollution.  Subse-
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quently, Brown et al. (1970) refined the index to encompass nine parameters such as pH, temperature, DO, 
BOD, PO4

-3, NO3
-, turbidity, solids content, and coliform bacteria. Steinhart et al. (1982) developed an EQI 

specifically for the Great Lakes, which included variables like specific conductance, Cl-, TP, FC, Chl-a, 
SS, visible pollution, and toxic contaminants. In the mid-1990s, the British Columbia Ministry of Environ-
ment, Lands, and Parks created the BCWQI as a standardized tool for assessing WQ on a scale of 0 to 100, 
based on physical, chemical, and biological indicators, to facilitate decision-making and water management 
(Zandbergen and Hall 1998). The WQGTG of the CCME, which is responsible for developing and recom-
mending WQ guidelines in Canada, subsequently developed the CCME WQI after reviewing and revising 
the BCWQI model, which had already received recognition from recognized by the CCME (Uddin et al. 
2021). The WQI is classified into several categories based on its numerical value. A WQI score ranging 
from 0 to 44 is designated as deviations from natural WQ and necessitating treatment prior to making the 
water safe for consumption. A WQI of 45 to 64 indicates that the WQ is frequently at risk and often diverges 
from natural levels, thereby affecting its appropriateness for irrigation purposes. A score between 65 and 79 
is deemed WQ is generally safeguarded, it is occasionally threatened, with some deviations that may impact 
irrigation. A WQI value of 80 to 94 is regarded as water is typically well-protected, with minimal threats 
and infrequent deviations from natural levels. Lastly, a WQI score of 95 to 100 is considered well-protected 
WQ that is suitable for drinking, irrigation, and industrial applications (CCMEWQI 1999).

Table 1 presents an evaluation of pollution control measures through the application of various WQIs. 
Cristable et al. (2020) used the NSFWQI to assess WQ in Saluran Tarum Barat, West Java. This assessment 
involved measuring parameters such as temperature, turbidity, TS, pH, DO, BOD5, PO4

-3, NO3
-, and FC, 

revealing medium level of WQ, which was adversely affected by agricultural, industrial, and infrastructural 
activities in the region. Similarly, Xiao et al. (2020) employed the WAWQI to evaluate the Arid Beichuan 
River Basin in China, measuring parameters including pH, DO, TDS, K, Na, Ca, Mg, NO3

-, NO2
-, NH4

+, Cl-, 
SO4

-2, TN, TP, COD, TOC, NH4
+, Fe, Mn, and Pb. Their findings revealed a degradation of WQ degradation 

from upstream to downstream, primarily attributed to human activities and contaminant runoff during the 
wet season. Additionally, Stričević et al. (2021) conducted an assessment of the Nišava River in Serbia us-
ing the SWQI, evaluating parameters such as oxygen saturation, BOD5, NH4

+, pH, TON, orthophosphates, 
SS, temperature, EC, and TC, respectively. This study identified the Jerma River as having poor WQ, with 
a noted decline since 2013 due to the discharge of untreated wastewater. Furthermore, Sudhakaran et al. 
(2020) assessed the Netravati River Basin in India using both the WAWQI and IWQI, analyzing parameters 
including pH, DO, EC, TDS, HCO3

-, Na, K, Ca, Mg, Cl-, SO4
-2, PO4

-3, NO3
-, Fe, and Pb. In their study, they 

found significant seasonal variations in WQI values influenced by salt deposits, sewage, industrial waste, 
and other anthropogenic activities.

Radeva and Seymenov (2021) employed the CCMEWQI to evaluate the WQ of the Maritsa River in 
Southern Bulgaria. Their analysis included parameters such as  N-NH3, N-NO3

-, N-NO2
-, TN, TP, PO4

-3, 
NH4

+, As, Fe, Cu, Mn, Ni, Pb, and Zn. The findings indicated that the majority of these parameters failed to 
meet established WQ standards, primarily due to unregulated discharges from mining activities, anthropo-
genic influences, and industrial sources.  Similarly, Fu et al. (2022) applied the IWQI to evaluate the Tuo 
River in China, assessing parameters such as the permanganate index, F-, TN, BOD5, COD, N-NH3, DO, 
TP, EC, NO3

-, SO4
-2, and Cl-. Their results revealed that 67.8% of the samples were classified as medium, 

29% as poor quality, and 3.2% as bad quality. Wang et al. (2022) applied the WAWQI to evaluate the WQ of 
Tolo Harbour and Channel in Hong Kong. They examined parameters including temperature, pH, turbidity, 
DO, BOD5, COD, TKN, TP, TSS, NH3-N, NO2-N, NO3-N, PO4

-3, F-, Cu, Zn, As, Chl-a, oil and grease. The 
study concluded that the overall WQ was generally rated as outstanding or good, although some regional 
variations were noted. Finally, Yılmaz et al. (2020) assessed the Büyük Menderes River in Turkey using the 
WAWQI, measuring parameters such as pH, EC, TDS, Cl-, N-NO3, N-NH3, DO, COD, orthophosphates, 
SO4

-2, Na, K, Ca, and Mg. They recommended the treatment of domestic and industrial wastewater prior to 
discharge, as well as the regulation of fertilizer and pesticide usage, to preserve WQ. 

Traditional water monitoring methods

Historically, methods for assessing WQ have included visual inspections, basic chemical testing techniques 
(such as titrations and colorimetric assays), and biological monitoring utilizing bioindicators, including 
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macroinvertebrates. These approaches have contributed significantly to the foundational understanding of 
WQ management (Omer 2019). Additionally, manual grab sampling has frequently been utilized to facili-
tate detailed laboratory analyses, enabling more accurate measurements (Aryal 2022).

While traditional methods have established a critical foundation for understanding WQ, their inherent 
limitations impede comprehensive and real-time monitoring. These methods typically provide only discrete 
snapshots of WQ at specific locations and times, thereby failing to capture dynamic changes (Park et al. 
2020). They are labor-intensive and time-consuming, as they depend on manual sampling and laboratory 
analysis, which restricts their capacity to cover extensive areas or to respond promptly to emerging issues 
(Cassidy and Jordan 2011). Additionally, these methods often concentrate on a limited range of WQ pa-
rameters, which may result in the oversight of emerging contaminants and indicators of ecosystem health. 
Variability in sampling and laboratory procedures can also lead to inaccuracies, further complicating the 
reliable assessment of WQ (Harris et al. 2019).

Modern technologies, including high-resolution MS, LC-MS/MS, and IoT-enabled sensors, address 
existing limitations by facilitating continuous, real-time monitoring and enhancing precision (Borrull et al. 
2020; Brack et al. 2019; Essamlali et al. 2024). These advancements allow the detection of trace contam-
inants and permit the simultaneous measurement of multiple WQ parameters. The integration of big data 
analytics and AI provides sophisticated analytical capabilities, allowing for the identification of complex 
patterns and trends that traditional methodologies may not readily reveal (Kamyab et al. 2023). Although 
modern systems necessitate higher initial investments, they ultimately reduce long-term costs through in-
creased efficiency and labor savings, while delivering more accurate and timely data for effective water 
management.

Real-world case studies highlight the limitations of traditional WQ monitoring methods. For instance, 
in Lake Villarrica, conventional monitoring practices failed to anticipate an algal bloom, which resulted 
in significant ecological damage (Rodríguez-López et al. 2023). In African rivers, such as the Msimbazi 
and Mirongo, insufficient monitoring contributed to unchecked industrial pollution, leading to extensive 
contamination (Chen et al. 2022). Similarly, in Maros City, Indonesia, traditional assessments neglected 
to account for the cumulative effects of urban runoff, which adversely affected WQ (Syafri et al. 2020). In 
Nepal, the manual sampling techniques employed by Aryal et al. (2022) were found to be labor-intensive 
and inadequate for providing real-time responses to water contamination. These instances underscore the 
urgent need for modern, integrated WQ monitoring solutions that effectively and sustainably address the 
complexities of contemporary water challenges. Amrita and Babiyola (2018) conducted a comparative 
analysis of traditional and modern WQ assessment methods, revealing that modern techniques offer distinct 
advantages. Specifically, modern methods yield real-time results and facilitate rapid analysis of WQ param-
eters, enabling prompt identification of contaminants. In contrast, traditional methods, such as titration, are 
often time-consuming, frequently requiring more than a day to complete, and demand considerable effort. 
Consequently, Pasika and Gandla (2020) reported that traditional assessments in aquaculture produced 
inconsistent results and less valuable data due to variations in water sample composition during prolonged 
testing periods.

Advances in water quality monitoring technologies

In recent decades, advancements in RS and satellite technologies have significantly transformed WQM. 
Satellites equipped with sophisticated sensors now provide invaluable data concerning extensive water 
bodies and even remote areas. High-resolution spectral data obtained from satellite sensors facilitates the 
identification of specific WQ parameters, such as Chl-a concentration, turbidity, and TSS (Tesfaye 2024). 
For instance, Sentinel-2 MSI and Landsat OLI images employ multispectral imagery to detect variations in 
Chl-a concentration, which serve as indicators of algal blooms (Xu et al. 2021). This capability empowers 
comprehensive monitoring of WQ across vast areas, providing critical insights into the health of aquatic 
ecosystems. A summary of advancements in WQM are presented in Table 2.

In comparison to traditional methodologies, regular satellite observations provide valuable temporal 
insights into changes in WQ, facilitating the identification of trends and potential issues over time. By 
consistently monitoring aquatic environments, satellites are capable of tracking seasonal variations, pollu-
tion events, and long-term environmental changes (Naimaee et al. 2024). This temporal data is pivotal for 
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understanding the impacts of anthropogenic activities and natural processes on WQ. Additionally, satellite 
technology allows for the monitoring of water bodies on a global scale, thus contributing to a comprehen-
sive understanding of large-scale environmental changes (Schaeffer et al. 2013). The Aqua satellite, which 
is part of the EOS, assesses global WQ by measuring parameters such as sea surface temperature, salinity, 
and Chl-a concentrations (Parkinson 2003). Such extensive data supports international initiatives aimed at 
the management and protection of water resources.

Using satellite data, Bonette et al. (2024) conducted an analysis of TSS and Chl-a concentrations in the 
Gold Coast Broadwater, Australia. Their findings indicated that summer rainfall events were responsible 
for the most significant WQ issues observed in the dataset. A high concentration of TSS originating from 
the northern rivers gradually dispersed southward, while elevated levels of Chl-a were initially detected 
in the southernmost region. In a separate study, Lioumbas et al. (2023) investigated Chl-a concentrations, 
turbidity values, and the presence of hydrocarbons in the Polyphytos Reservoir, West Macedonia, Greece. 
An analysis of over 300 satellite images and algorithms such as NDWI, Se2WaQ, and OSI was used to 
identify formations impacting surface WQ and provide a comprehensive characterization over a nine-year 
period. Additionally, Kislik et al. (2022) employed Sentinel-2 MSI data to examine algal blooms in two 
small freshwater reservoirs located in northern California, USA. They quantified the spatiotemporal het-
erogeneity of algal blooms using the NDCI and performed an efficient time series analysis using GEE. This 
research illustrated the potential of RS to furnish baseline data for aquatic studies, particularly in significant 
contexts like the largest dam removal in history. Guo et al. (2021) identified bands 3, 4, and 5 of Sentinel-2 
imagery as the most influential for detecting TN, TP, and COD, noting that variations in TDS or salinity fre-
quently coincided with changes in optically active WQ parameters, though not always to the same extent. 
Rokni et al. (2014) modeled the spatiotemporal changes of Lake Urmia, Iran, utilizing multiple Landsat 
sensors and various indices, and  determined NDWI as the most effective for assessing alterations in the 
lake’s surface area. Principal components analysis of multi-temporal NDWI data revealed a decreasing 
trend in the lake’s surface area throughout the study period. Additionally, Chen et al. (2007) aimed to map 
the spatial distribution of WQ in the Gulf of Finland, specifically focusing on NO3

- concentrations, which 
were found to be below 25 mg/L. 

Sayler et al. (2022) used Landsat 9 OLI-2, which produced images that were consistent with those 
from Landsat 8 in terms of spectral, spatial, geometric, and radiometric characteristics. Landsat 9 
features a 16-day revisit cycle and an 8-day offset relative to Landsat 8, facilitating the acquisition 
of over 700 scenes daily. This frequent and reliable data collection is crucial for effective monitoring 
and management of water resources. Vakili et al. (2020) utilized optically active parameters, including 
Chl-a, SDD, and TSS to estimate optically inactive parameters, such as TP and TN in the Geshlagh 
Reservoir located in western Iran, using Landsat 8 OLI images. They revealed the band ratio (B3/
B2) and bands 3 and 4 as the most effective for determining Chl-a concentration and subsequently 
predicting TP and TN concentrations. Herrault et al. (2016) demonstrated the application of a CDOM 
algorithm for monitoring DOC fluxes in the Yenisei River, employing Landsat 8 OLI and SPOT5 im-
ages. Their model, based on the interaction of the green band and the green-red band, achieved high 
prediction accuracy with a model based on the green band and green-red band interaction (R² = 76%, 
RMSE = 1.21), and recommended extensive sampling along with synergies between Sentinel-2-3 and 
Landsat 8 for reproducible CDOM retrievals. Hossain et al. (2021) also employed a numerical model 
to estimate turbidity in the Tennessee River and its tributaries, applying Landsat 8 OLI imagery in 
conjunction with near real-time in situ measurements. They developed a nonlinear regression-based 
model using surface reflectance values (0.64–0.67 µm) from the red band (band 4) to estimate turbid-
ity. Kutser et al. (2005) concluded that the 8-bit radiometric data from Landsat 7 were inadequate for 
estimating CDOM in southern Finnish lakes when the absorption coefficient exceeded 3 m-1 at 420 nm, 
suggesting that the ALI was more effective for mapping CDOM across a broader concentration range. 
Hellweger et al. (2004) investigated the use of satellite imagery for WQ studies in New York Harbor 
by comparing in situ data with images from Landsat 5 TM and MODIS sensors. They found a strong 
correlation between the reflectance of the Landsat 5 TM red bandwidth (0.63–0.69 µm) and turbidity 
(R² = 85%, n = 21), as well as Chl-a concentration (R² = 78%, n = 16), while indicating that Terra 
MODIS images were unsuitable for determining Chl-a concentration due to a lack of correlation with 
in situ measurements. Zhang et al. (2002) utilized an empirical neural network to estimate WQ param-
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eters such as SSC, SDD, turbidity, and Chl-a concentration in the Gulf of Finland, integrating optical 
data from Landsat 5 TM with microwave data from ERS-2 SAR. This approach demonstrated a robust 
modeling capability that captured the nonlinear relationships between these sensors and surface water 
parameters, with thermal bands enhancing model performance to achieve R² values exceeding 91% for 
all measured WQ parameters. Notably, the exclusion of thermal bands resulted in a slight decrease in 
R², yet values remained above 85%.   

Hu et al. (2004) employed MODIS medium-resolution bands to investigate salinity, Chl-a, CDOM, 
and total SSC in Tampa Bay, Florida, over a  two day-period in October 2003. Their findings indicated 
that within the Case-II waters of Tampa Bay, the concentrations of Chl-a (11 to 23 mg/m³),  the CDOM 
absorption coefficient at 400 nm (0.9 to 2.5 m⁻¹), and total SSC (2 to 11 mg/L) often did consistently not 
co-vary across the salinity range of 24–32 PSU. Remarkably, CDOM demonstrated a linear, inverse rela-
tionship exhibiting surface salinity, with varying slopes at different locations. The authors further reported 
that MODIS medium-resolution bands were  4–5 times more sensitive than Landsat-7/ETM+ data and were 
comparable to or exceeded the sensitivity of the CZCS. Karami et al. (2012) used MODIS data alongside 
statistical methods to evaluate WQ parameters such as COD, BOD5, DO, PO₄-3, Br-, F-, TDS, SO₄-2, NH₃, 
NO₃⁻, and NO₂⁻ in the Jajrood River Watershed, located north of Tehran, Iran.  Their discriminant analysis 
highlighted significant contributions from multiple parameters to class discrimination, particularly during 
the spring and summer months, with notable distinctions in April and September. The researchers utilized 
river water temperature, runoff data, and MODIS products, such as monthly NDVI and LST from 2002 to 
2007, as explanatory variables, averaging NDVI and LST values within buffer zones ranging from 250 to 
1500 meters around the streams.  In contrast, Zhang et al. (2019) focused on the application of a microwave 
sensor array in New York to detect a wide range of water contaminants and parameters, including NO3

-, 
PO4

-3, NH4
+, heavy metals (Hg, Pb, Cr), pH, conductivity (NaCl), and DO. Their research underscored the 

advantages of employing a multi-frequency sensor array, wherein different frequencies exhibited varying 
effectiveness in detecting contaminants, each demonstrating distinctive responses. The study highlighted 
the significance of frequency shifts and changes in resonance frequency in optimizing the detection and 
assessment of water contaminants, thereby emphasizing the versatility and specificity provided by such 
sensor arrays in the context of environmental monitoring.

Artlett and Pask (2017) demonstrated the utility of unpolarized Raman spectroscopy for determining sa-
linity and temperature in natural water samples from Australia, achieving precise measurements with tem-
perature RMSEs below 0.2°C and salinity RMSEs below 0.6 PSU. Their study applied a numerical model 
based on MLR to illustrate that both temperature and salinity similarly influenced the Raman spectra, with 
increases in either parameter resulting in a corresponding decrease in signal intensity.  In contrast, Wei et 
al. (2016) investigated UV-visible RS reflectance to assess the spectral slopes of the absorption coefficient 
of CDM in various aquatic environments. They highlighted the sensitivity of UV wavelengths to variations 
in CDM spectral slope and advocated for their integration into future satellite ocean color sensors to en-
hance retrieval accuracy across coastal and open ocean regions, emphasizing the potential benefits of UV 
wavelengths in ocean color measurements. Lin and Li (2010) utilized the FT-IR-attenuated total reflectance 
technique to analyze VOCs in water samples from California, USA, optimizing flow rates and membrane 
thickness for VOC detection. They emphasized the impact of turbulent flow on detection effectiveness 
compared to laminar flow, highlighting the necessity to balance flow dynamics with ATR signal intensity, 
ensuring that the optimal membrane thickness aligned with the penetration depth of the infrared evanescent 
wave and the diffusion depth of the analyte for improved sensitivity. Lee and Ahn (2004) employed FEEM 
to analyze organic content, focusing on COD in wastewater samples from South Korea. Their study iden-
tified optimal excitation/emission wavelength pairs for protein-like and humic-like fluorescence, revealing 
strong correlations between protein-like fluorescence peaks and COD values. They achieved enhanced 
prediction accuracy through statistical regression methods by integrating fluorescence intensities and light 
scattering data as variables, resulting in high correlations (r² > 0.9) between measured and predicted COD 
values without the need for sample pre-treatment. This illustrates diverse spectroscopic techniques tailored 
for WQ assessment and their specific advantages and methodological nuances in detecting and quantifying 
environmental parameters.

Nanotechnology has significantly enhanced the analysis of WQ by improving sensitivity and precision 
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of contaminant detection. Nanosensors are capable of identifying pollutants at extremely low concentra-
tions, which facilitates early detection of pollution and the prevention of harmful exposures. Nanobiosen-
sors, characterized by their small size and high sensitivity, are crucial for real-time monitoring of biomark-
ers at low concentrations, thereby playing an essential role in WQ assessment. These sensors can also detect 
microorganisms like bacteria and viruses, in water (Gupte and Pradeep 2021). One notable application in 
WQ analysis involves the use of Au-NPs, aptamer-vancomycin dual-recognition molecules, and magnetic 
enrichment techniques to visually detect Staphylococcus aureus in tap water. The methodology employed 
in this study involved the initial binding of S. aureus to aptamer-coupled Fe₃O₄ for separation and en-
richment from complex sample matrices. This was followed by the conjugation of vancomycin to the S. 
aureus-Apt-Fe₃O₄ complex for a secondary recognition step, which supported straightforward colorimetric 
detection with a linear range from 10¹ to 10⁴ CFU/ml and a detection limit of 0.2 CFU/ml (Sun et al. 2022). 
Researchers have advanced WQM by developing carbon nanotube-based sensors capable of detecting trace 
amounts of heavy metals such as Pb and Hg, which are important for ensuring the safe drinking water (Raju 
et al. 2023). Additionally, nanomaterials have been integrated into water treatment processes; for instance, 
TiO2-NPs in photocatalytic processes to decompose organic pollutants, thereby enhancing the cleanliness 
and safety of water for consumption (Levchuk and Sillanpää 2019). The miniaturization of these devices 
has further facilitated the development of portable, nanotechnology-based tools for real-time WQ assess-
ments, providing immediate feedback and enabling prompt remedial actions.

Bio-sensors have emerged as pivotal instruments in real-time WQM, utilizing biological components 
for the rapid and sensitive detection of contaminants. These devices employ biological recognition ele-
ments such as living organisms, enzymes, or antibodies, which significantly enhance the specificity and 
sensitivity of contaminant detection (Singh et al. 2020). The rapid response capabilities of bio-sensors facil-
itate immediate feedback regarding changes in WQ, rendering them indispensable for real-time monitoring. 
In addition, bio-sensors can be customized to detect specific contaminants, which provides a versatile and 
targeted approach to WQ assessment. This adaptability positions bio-sensors as powerful tools for the ef-
fective management and protection of water resources (Huang et al. 2023). On the other hand, Dabhade et 
al. (2023) developed Ag-NP biosensors for the detection of E. coli in water, demonstrating high sensitivity 
and selectivity with a low detection limit of 150 CFU/ml and excellent reproducibility (RSD = 6.91%, n = 
3). Additionally, these biosensors exhibited stability for up to four weeks at room temperature and achieved 
high recovery rates in tap water, ranging from 95.27% to 107%.

The integration of sensor networks and IoT technologies has significantly transformed WQM into a 
real-time, interconnected system. Sensors strategically deployed throughout aquatic environments facili-
tate the continuous collection of high-resolution data, thereby enhancing the understanding of spatial and 
temporal variations in WQ. This innovative approach improves the ability to detect and respond promptly 
to pollution incidents (Essamlali et al. 2024). In contrast to traditional methods, Smart Water Networks 
employ sensor arrays to monitor critical parameters like pH, turbidity, and DO levels in real-time. The im-
plementation of IoT technology enables seamless communication between sensors and centralized systems, 
which allows for timely responses to fluctuations in water conditions. Consequently, data from remote 
sensors can be rapidly analyzed and acted upon, thus improving water management practices (Pasika and 
Gandla 2020). Integrating data from various sensors improves the accuracy and reliability of WQ assess-
ments by cross-verifying readings and providing a comprehensive overview of WQ. 

Amruta and Satish (2013) proposed a solar-powered WQM system using a WSN that incorporated a 
UWSN powered by photovoltaic panels. They designed a system architecture that included a base sta-
tion and distributed sensor nodes interconnected via Zigbee WSN technology, facilitating real-time WQM 
across various locations. Despite encountering challenges in the design and implementation of the pro-
totype model, the data collected at each node, including turbidity, oxygen levels, and pH values, were 
transmitted to the base station through the WSN. This data was subsequently displayed in comprehensible 
format and analyzed using various simulation tools. The system offered several advantages, including low 
power consumption, zero carbon emissions, and flexibility for deployment in diverse locations. Sughapri-
yaa et al. (2018) developed a method for determining WQ using IoT and various sensor modules. This 
approach, in contrast to traditional methods that necessitate greater manual intervention and exhibit lower 
efficiency, aided rigorous monitoring of water pollution. The system employed sensors to monitor pH, 
turbidity, conductivity, and temperature, with an Arduino controller facilitating access to the sensor data. 
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Alerts and notifications regarding WQ were sent to individuals and relevant authorities, thereby enhancing 
WQM near water resources. The proposed model, which integrated various sensors, computed WQ param-
eters in real-time.

Gupta et al. (2021) proposed an IoT-based model designed to automatically evaluate WQ parameters 
such as turbidity, pH, and temperature using the ESP32 for underwater communication. This model in-
tegrates various communication modules, a turbidity meter, and a pH sensor, and employs a MLA using 
K-means clustering to analyze WQ data. The mobile model is capable of continuously monitoring WQ in 
both large and localized water bodies, with readings displayed on a website accessible to the central pollu-
tion control board. The low-cost robotic system capable of underwater communication via high-speed Wi-
Fi, enhancing the project’s self-sufficiency and efficiency. Anuradha et al. (2018) developed a cost-effective 
system for real-time WQM utilizing IoT. This system measures chemical and physical parameters, such as 
pH, temperature, turbidity, and TDS, with data processed by a Raspberry Pi controller and displayed on the 
internet through the ThingSpeak API. The sensor-based system is characterized by high mobility, frequen-
cy, and low power consumption, and it is capable of measuring additional quality parameters, including 
hardness, EC, F-, Cl-, NH3, and Fe content, making it suitable for industrial and drinking water monitoring 
applications. Geetha and Gouthami (2016) developed a low-powered, simple IoT-based system for in-pipe 
WQM. This system tests water samples, uploads sensor data online, and issues alerts for deviations in tur-
bidity, conductivity, and pH levels. The core controller is equipped with a built-in Wi-Fi module for remote 
monitoring, and the system’s functionality could be enhanced through the integration of anomaly detection 
algorithms. Mukta et al. (2019) developed an IoT-based SWQM system that employs pH, temperature, 
turbidity, and electrical conductivity sensors connected to an Arduino Uno. This system transmits data 
to a NET desktop application for analysis against standard values. The model utilizes a fast forest binary 
classifier to assess water potability, thereby improving WQM and highlighting the role of technology in 
sustainable water resource management.

Emerging technologies 

Advancements in DNA sequencing technologies have profoundly transformed the assessment of microbi-
al WQ, providing enhanced insights into microbial communities and potential health risks. High-through-
put sequencing methods, particularly NGS, facilitate the rapid and comprehensive profiling of microbial 
DNA in water samples (Tan et al. 2015). This capability allows for an in-depth understanding of the 
diversity and structure of microbial communities. Additionally, DNA sequencing aids in the identifica-
tion of specific pathogens, thereby enabling the monitoring of waterborne disease risks and the formu-
lation of timely interventions. Through microbial source tracking, DNA sequencing can also pinpoint 
contamination sources, whether of human, agricultural, or wildlife origin, thus supporting targeted and 
effective mitigation strategies (Chan et al. 2019). El-Chakhtoura et al. (2015) employed NGS to inves-
tigate the stability of microbial communities from a water treatment facility to its distribution endpoint. 
Their findings revealed significant disparities between the microbial populations at the treatment plant 
and the endpoint, suggesting considerable alterations within the distribution network. Notably, rare taxa 
such as Nitrospirae, Acidobacteria, and Gemmatimonadetes exhibited greater abundance at the endpoint 
compared to the treatment facility. Although these changes did not present a public health risk, the re-
sults of the 16S rDNA sequencing underscore the necessity for continuous WQ assessments throughout 
distribution systems.

Metabolomics and proteomics represent advanced analytical methodologies that facilitate a comprehen-
sive understanding of the biochemical processes occurring within aquatic environments. By analyzing the 
distinct profiles of metabolites and proteins present in water samples, these techniques yield an in-depth 
perspective of the biochemical landscape (Lin et al. 2006). They are capable of identifying a diverse array 
of compounds, thereby enabling the identification of specific metabolites or proteins that function as bio-
markers for contaminants. This integrative analysis supports the early detection of environmental stressors, 
which is crucial for proactive water resource management and helps shape strategies to maintain and restore 
water quality (López-Pedrouso et al. 2020).

The application of stable isotopes has emerged as a significant methodology for tracing water sources 
and comprehending hydrological processes. Stable isotopes demonstrate predictable fractionation patterns 
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during both physical and chemical processes, promoting researchers to monitor the movement of water 
(Negev et al. 2017). Isotope analysis facilitates the differentiation among various water sources, includ-
ing surface water, groundwater, and precipitation, thereby providing key information for the management 
and allocation of water resources. Also, stable isotopes contribute to the understanding of the cycling and 
transformation of water within ecosystems, offering valuable insights into intricate hydrological dynamics. 
This approach is particularly advantageous in research focused on assessing the impacts of climate change, 
pollution, and other factors on water resources (Nigro et al. 2024).

Innovative sampling techniques

Traditional methodologies such as spot sampling and in-situ measurements are often labor-intensive and 
constrained by accessibility issues. To address these challenges, the utilization of drones equipped with 
specialized sensors and sampling devices, in conjunction with IoT-based systems, presents innovative solu-
tions. These advanced techniques facilitate real-time, continuous monitoring and yield more accurate and 
comprehensive data regarding WQ.

Microfluidics has emerged as an advanced technology in the collection of water samples, demonstrating 
precision and efficiency in the analysis of WQ parameters. A significant innovation within this domain is 
the development of lab-on-a-chip devices, which integrate various analytical functions onto a single chip. 
These devices facilitate the rapid and simultaneous analysis of multiple WQ parameters, streamlining the 
assessment process and reducing the time required for evaluations (Saez et al. 2021). Microfluidic systems 
are particularly noteworthy for their miniaturization, which allows for the creation of compact and portable 
sample collection devices that require smaller sample volumes. This technology supports real-time, on-site 
analysis, eliminating the necessity of transporting samples to laboratories and expediting WQ management 
decisions (Zhang et al. 2024).

Passive sampling methods signify a paradigm shift from traditional grab sampling techniques, enabling 
continuous and long-term monitoring of WQ. For instance, diffusive samplers employ passive diffusion 
to accumulate contaminants over time, thereby providing a more accurate representation of long-term ex-
posure to pollutants (Vrana et al. 2005). Additionally, sorbent-based techniques are extensively used in 
passive sampling, incorporating materials that selectively absorb specific contaminants, which allows the 
concentration and detailed analysis of these pollutants (Godlewska et al. 2021). A primary advantage of 
passive sampling is its capacity to provide continuous monitoring, which captures fluctuations in WQ over 
prolonged periods and enhances the detection of trends and potential issues that may not be evident through 
intermittent sampling efforts (Zabiegała et al. 2010).

Drones have significantly transformed the process of water sample collection, particularly in areas that 
are difficult to access or pose safety risks. These unmanned aerial vehicles, equipped with high-resolution 
cameras and advanced sensors, facilitate the rapid and thorough assessment of extensive water bodies and 
remote locations. The integration of automated sampling devices on drones assists for precise collection 
from designated sites, thereby minimizing the necessity for manual intervention (Sibanda et al. 2021). This 
technological advancement is both cost-effective and efficient,  improving access to challenging environ-
ments and enhancing WQM efforts (Zhang et al. 2023).

Data management and analysis

The rise of advanced monitoring technologies has significantly augmented the volume of data in WQ man-
agement, creating challenges in the management, processing, and extraction of insights from large datasets. 
Prominent issues include the necessity to address the substantial and rapid influx of data generated by nu-
merous sensors, which necessitates the implementation of scalable processing solutions (Adamala 2017). 
Ensuring data quality and standardization across various sources is imperative for conducting reliable anal-
yses. The interoperability of different data formats is also critical for achieving comprehensive integration 
and analysis (Kadadi et al. 2014). Additionally, protecting the security and privacy of WQ data is essential 
to prevent unauthorized access and to ensure compliance with relevant regulations.

Efficient data storage and retrieval systems are crucial for effective WQM. Cloud-based storage solu-
tions provide scalable, secure, and accessible options for managing substantial volumes of WQ data, offer-
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ing flexibility and reliability (Lakshmikantha et al. 2021). Robust database systems, including both rela-
tional and NoSQL databases, set up structured storage and rapid retrieval of WQ information (Schulz et al. 
2016). The systems that support real-time data access are particularly valuable, as they facilitate immediate 
analysis and decision-making, enhancing the responsiveness and effectiveness of WQ management initia-
tives (Zainurin et al. 2022).

The integration of diverse datasets, coupled with the utilization of visualization tools, significantly 
enhances the interpretability and usability of WQ data. Integration platforms that amalgamate data from 
multiple sources provide a comprehensive perspective on WQ parameters and trends (Essamlali et al. 
2024). Geospatial integration is particularly beneficial for improving spatial analysis and decision-making 
by merging WQ data with geographical information. Visualization tools, such as GIS-based maps, charts, 
and dashboards, provide intuitive and accessible insights into complex WQ datasets, thereby facilitating 
stakeholders’ understanding and enabling informed action based on the information presented (Oseke et al. 
2020).

Big data analytics is instrumental in the identification of emerging contaminants that may be over-
looked by traditional methodologies.  ML and AI have become essential tools for the prediction and 
assessment of WQ. ML algorithms analyze historical data to forecast future WQ conditions, aiding in 
proactive management and intervention (Essamlali et al. 2024). In contrast, AI models are capable of 
predicting algal blooms by analyzing historical data related to nutrient levels, temperature, and other 
factors. By examining complex datasets derived from diverse sources, such as industrial discharges and 
agricultural practices, AI can identify patterns that indicate the presence of new or unregulated pollut-
ants. This enhances monitoring efforts and activates timely interventions to mitigate associated risks. 
Additionally, AI applications are adept at detecting patterns and anomalies within WQ data,  improving 
the identification of contamination events or abnormal conditions (Sheik et al. 2023). This capability is 
crucial for the development of early warning systems that safeguard public health and protect aquatic 
ecosystems. The integration of AI and big data analytics with RS technologies, including satellite imag-
ery and GIS, allows for large-scale monitoring of water bodies. This integration facilitates the detection 
of changes in WQ across extensive areas (Duan et al. 2024). Such an approach yields valuable insights 
into the impacts of land-use changes, urbanization, and climate variability on water resources, ultimately 
contributing to the formulation of more effective management strategies. Additionally, ML algorithms 
can be adapted to accommodate changing environmental conditions, providing dynamic and responsive 
WQ management (Ahmed et al. 2019). These algorithms continuously learn from new data, enhancing 
their predictive capabilities  and recommendations over time.

Regulatory frameworks and policies 

WQ management is of paramount importance for safeguarding public health, preserving ecosystems, and 
ensuring sustainable water resources. In light of increasing global challenges such as pollution and water 
scarcity, the establishment of international regulatory frameworks has become essential for effective man-
agement. Organizations such as WHO, the UNEP, and the EU have developed comprehensive guidelines 
and standards pertaining to WQ. These guidelines address a range of issues, from the provision of safe 
drinking water to the protection of ecosystems. The frameworks delineate contaminant limits and advocate 
for integrated approaches, thereby facilitating cooperation among nations to mitigate pollution and advance 
sustainable water resource management.

Global WQ standards are instrumental in harmonizing initiatives aimed at safeguarding water resources 
and public health. The WHO guidelines lead these initiatives by establishing thresholds for critical WQ 
parameters that are vital for both human and environmental health (WHO 2022). These guidelines present 
a universally acknowledged framework for WQ management, fostering consistency in policies among var-
ious nations. In a similar vein, organizations such as the ISO develop standardized methodologies for WQ 
analysis, which facilitate the comparability of data on a global scale. These standards provide a structured 
approach for laboratories and researchers, enhancing the reliability and accuracy of WQ assessments across 
diverse regions (ISO 2023).

Many regions adapt global standards to address local conditions. For instance, the WHO has established 
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drinking-water guidelines that set permissible limits for various contaminants, including As (10 µg/L), NO3
- 

(50 mg/L), and Pb (10 µg/L), as well as Bisphenol A (0.1 μg/L), Nonylphenol (0. 3 μg/L) and  Beta-estra-
diol (1 ng/L), providing a foundational framework for national regulations (WHO 2017). UNEP’s Global 
Programme of Action to address pollution originating from land-based sources, while the EU’s WFD aims 
to maintain high WQ standards across Europe. The DWD enforces stringent standards for contaminant 
concentrations in drinking water to protect public health. For example, Pb concentrations are restricted to 
10 µg/L, NO3

- levels are limited to 50 mg/L, and As is capped at 10 µg/L. The microbiological parameters, 
such as E. coli, must be absent in a 100 mL sample of water (EU 2020). These standards are routinely up-
dated in response to emerging scientific data and health risk assessments.

In the United States, the Safe Drinking Water Act establishes maximum contaminant levels for both 
chemical and biological substances present in drinking water, while the Clean Water Act governs discharges 
into the nation’s water bodies. This legislation encompasses all water sources currently utilized or potential-
ly usable for drinking purposes, which includes both surface water and groundwater (EPA 2024). The ISO 
5667 series delineates standards for water sampling and monitoring, thereby promoting methodological 
consistency. It offers general principles and guidance for the design of sampling programs and techniques 
applicable to various aspects of water sampling, including drinking water, wastewater, sludges, effluents, 
SS, and sediments (ISO 2023). The Basel Convention is focused on regulating transboundary movements 
of hazardous wastes to ensure their safe disposal, while the Stockholm Convention addresses persistent 
organic pollutants  that pose significant risks to WQ and ecosystems. Additionally, conventions pertaining 
to the Helsinki and Danube rivers emphasize the management of transboundary watercourses to safeguard 
shared water resources (Kiss and Shelton 2021). 

International agreements and treaties provide essential frameworks for the collaborative management 
of shared water resources, thereby facilitating coordinated efforts to address transboundary WQ issues. A 
critical component of this collaboration is the exchange of WQ data and the harmonization of monitoring 
methodologies, which enhance consistency across different jurisdictions. Joint research initiatives contrib-
ute to a deeper understanding of WQ challenges and promote innovative solutions that transcend national 
borders. Through such collaboration, nations can effectively manage shared water bodies, advance sus-
tainable development, and safeguard water resources for future generations. These frameworks establish 
protocols and guidelines for global WQ management, ensuring the availability of safe water for all.

Conclusion 

This study examines the development of WQM from traditional methodologies to advanced technologies 
and innovative sampling techniques. Key themes include the transformative effects of technologies such 
as RS, nanotechnology, sensor networks, and AI, which facilitate real-time assessments and data-driven 
decision-making processes. Effective WQ management requires international cooperation, which can 
be achieved through cross-border collaboration, the establishment of global standards, and the sharing 
of information. Despite the ongoing challenges posed by limited access to technology, complexities in 
data management, and the emergence of new contaminants, these issues also present opportunities for 
innovation and the development of adaptive strategies. To attain sustainable water resource management, 
it is imperative to amalgamate scientific advancements with community engagement and comprehensive 
regulatory frameworks. This integration is crucial for ensuring access to clean water, protecting ecosys-
tems, supporting economic development, and protecting public health. Ultimately, the modernization of 
WQ management enhances transparency and facilitates informed decision-making, thereby empowering 
communities to actively engage in the management of water resources. Collective efforts are essential 
for navigating the complexities associated with water management and for ensuring the sustainability of 
this vital resource.
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