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SHORT COMMUNICATION

Abstract Tonguefishes, commercially valuable marine flatfishes with a global distribution, are characterized 
by unusually small testes. Despite their economic importance, the detailed structure of these diminutive 
testes has not been adequately described. Mature testes of robust tonguefish (Cynoglossus robustus) 
were collected from the Seto Inland Sea, Japan. They were examined for gonadosomatic index (GSI) and 
histological characteristics. The localization of the cholesterol side-chain cleavage enzyme (P450scc) within 
the testis was also analyzed. The GSI of the sampled males was markedly lower than that of other bony 
fish. Histological analysis showed that the testes have a tubular structure, with spermatogenesis occurring 
in seminiferous tubules, which is less common among teleosts. The stage and structure of spermatogenesis 
varied depending on the location within the testis. In the cranial region of the testes, the spermatogonia and 
Sertoli cells were found only at the periphery. Meiotic spermatocytes, haploid spermatids and spermatozoa 
were primarily located in the inner part of the cranial region. Several seminiferous tubules containing 
only spermatids were observed in the caudal region. Strong positive signals for the P450scc antibody 
were detected in the interstitial Leydig cells surrounding the seminiferous tubules. This study provides a 
detailed description of the testicular structure in Cynoglossus robustus and contributes to understanding the 
relationship between testicular size, volume, and type in teleosts.
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Introduction

Flatfishes, members of Pleuronectiformes, are characterised by body asymmetry and are commercially 
important for fisheries worldwide (Friedman 2008; Gibson et al. 2014). In the Central Seto Inland Sea, 
Japan, three flatfish species belonging to the tonguesole family (Cynoglossidae) were caught using a small 
trawl net. These species include the robust tonguefish, Cynoglossus robustus, red tonguesole, C. joyneri, 
the and the threeline tonguefish, C. abbreviates (Baeck et al. 2011). These soles accounted for 9.7%–12.6% 
of the total fish caught per year in the local coastal area of the Seto Inland Sea (Mototani 2011). Due to the 
gradual decrease in the species’ stocks (Nagai 2003) and their commercial value, they are considered can-
didates for farming in the Seto Inland Sea, Japan. However, their basic reproductive biology, particularly 
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gametogenesis, has not been investigated despite information on their age, growth and spawning periods 
being limited. Consequently, little information is available on their breeding habits (Yamamoto et al. 2008; 
Yamamoto and Katayama 2013).

A typical reproductive characteristic of soles is their markedly lower volume and weight of testes than 
those of the ovaries. Thus, the male gonadosomatic index (GSI) is shallow throughout the year (0.0097 
± 0.004) in the Senegalese sole males (Solea senegalensis). Therefore, sole males produce poorer sperm 
volume and concentration (oligospermia) than other fish species (Ghaffari et al. 2015; Suquet et al. 1994). 
This characteristic leads to a considerable obstacle (low fertilization rate) in aquaculture (Agulleiro et al. 
2006; Anguis and Cañavate 2005). Histological observation of the Senegalese sole testes revealed that their 
spermatogonia belong to the unrestricted tubular type (García-López et al. 2005). These tubular testes are 
quite different from those of most flatfish and Perciformes (García-López et al. 2005).

Sex steroid hormones such as androgens and oestrogens directly control the growth and function of 
the testes in teleosts (Schulz et al. 2010). Several steroidogenic enzymes synthesized steroid hormones 
from cholesterol, a common precursor. Cholesterol conversion to pregnenolone is the first step in the ste-
roidogenic pathway (Simpson and Boyd 1966). This reaction is catalyzed by the cholesterol side-chain 
cleavage enzyme (P450scc), which expresses the cytochrome P450 family 11 subfamily A gene in the inner 
mitochondrial membrane of the steroid-producing cells (Winkel et al. 1980). Therefore, investigating this 
critical enzyme in the sole testes may lead to an improved understanding of the endocrinological mecha-
nisms of the tubular-type spermatogenesis.

Tonguefish species hold significant ecological and economic importance, yet detailed knowledge of 
their testicular structure and function remains limited. This study investigates the testicular microarchitec-
ture and steroidogenic capacity of the robust tonguefish (Cynoglossus robustus). We examine the fine struc-
ture of tonguefish testes, determine the spatial distribution of spermatogenesis, and localize steroidogenic 
cells using P450scc immunohistochemistry. Our findings contribute to the broader understanding of teleost 
reproductive diversity and provide insights into the adaptive significance of reduced testis size in flatfish. 
This research may inform future studies on flatfish reproduction and have implications for aquaculture 
practices and conservation strategies.

Materials and methods

Fish and sampling

Mature male robust tonguefish (n = 18) were collected from Bisan Strait of the Seto Inland Sea, Japan on 
July, 2014. Fish were captured using a bottom trawl net at depths of 8-20 m. Total length was measured to 
the nearest 0.1 cm using a measuring board, and body weight was recorded to the nearest 0.1 g using an 
electronic balance. Testes were carefully dissected and weighed to 0.01 g precision. They were weighed to 
calculate the gonadosomatic index (GSI), which was calculated as the ratio of gonad weight to body weight, 
expressed as a percentage (100%).

Testicular histology

The excised testes were immediately immersed in freshly prepared Bouin’s solution at 4°C for 24 hours 
fixation. After fixation, the testicular specimens were washed in 70% ethanol to remove excess picric acid, 
then dehydrated using a graded series of ethanol (70%, 80%, 90%, 95%, and 100%, 30 minutes each step, 
repeated twice for 100%). The samples were then cleared in Lemosol (Wako, Inc., Osaka, Japan) for 30 
minutes, repeated twice. The cleared samples were infiltrated with paraffin (Paraplast Plus®, Sigma-Al-
drich) at 60°C for 2 hours, with one change of paraffin after the first hour. The infiltrated samples were then 
embedded in fresh paraffin. Serial sections were cut at 7 µm thickness using a rotary microtome. Sections 
were floated on a water bath at 42°C and collected on adhesive slides (Matsunami Glass Ind., Ltd., Osaka, 
Japan, catalog number MAS-GP). The slides were dried overnight at 37°C. For histological staining, sec-
tions were dewaxed in xylene (3 changes, 5 minutes each), rehydrated through a descending ethanol series 
(100%, 95%, 80%, 70%, 5 minutes each), and rinsed in distilled water. Sections were stained with Mayer’s 
hematoxylin for 5 minutes, rinsed in running tap water for 5 minutes, counterstained with 1% aqueous eo-
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sin Y for 3 minutes, and rinsed briefly in distilled water. The stained sections were dehydrated through an 
ascending ethanol series (70%, 80%, 95%, 100%, 2 minutes each), cleared in xylene (3 changes, 5 minutes 
each), and mounted with a xylene-based mounting medium.

Immunohistochemical analysis of P450scc localization

The sections were subjected to immunohistochemical staining using a polymerised reporter enzyme stain-
ing system (ImmPRESS™; Vector Laboratories, Burlingame, CA, USA) to ascertain P450scc spatial dis-
tribution. Dewaxed and rehydrated sections were first subjected to heat-induced epitope retrieval in 10 mM 
citrate buffer (pH 6.0) at 95°C for 20 minutes, then cooled to room temperature for 20 minutes. To suppress 
endogenous peroxidase activity, sections were incubated in 3% hydrogen peroxide (H2O2) in methanol for 
10 minutes at 27°C. Nonspecific binding was blocked by incubating sections with 2.5% normal horse serum 
(provided in the ImmPRESS kit) for 30 minutes at room temperature.

Sections were then incubated with rabbit polyclonal antibody specific to rainbow trout P450scc (diluted 
1:1000 in PBS with 1% BSA) overnight at 4°C. The primary antibody was previously characterized for spec-
ificity (Kobayashi et al. 1998). After washing in PBS (3 times, 5 minutes each), sections were incubated with 
ImmPRESS anti-rabbit IgG (ready-to-use) for 30 minutes at room temperature. The binding sites were visu-
alized using a DAB substrate kit (Vector Laboratories, catalog number SK-4100). Sections were incubated in 
DAB solution (0.05% 3,3’-diaminobenzidine tetrahydrochloride and 0.01% H2O2 in 50 mM Tris-HCl buffer, 
pH 7.4) for 5 minutes at room temperature. Negative controls were prepared by omitting the primary antibody 
and replacing it with normal rabbit IgG at the same concentration (Data not shown). The resulting sections 
were observed and imaged under an FSX-100 microscope (Olympus, Tokyo, Japan) The specificity of the 
primary antibody was meticulously characterised in a previous study (Kobayashi et al. 1998).

Results

General testicular structure of the mature robust tonguefish

The testis of robust tonguefish is located within the upper-posterior compartment of the body cavity. Similar 
to other sole species, the testis is considerably smaller than the ovary, a trend evident even when accounting 
for equivalent body dimensions. The gonadosomatic index was 0.064 ± 0.0023.

Figure 1 depicts the cross-sectional slices of the testes subjected to haematoxylin and eosin staining. 
The testis of the robust tonguefish prominently comprised orderly arrays of seminiferous tubules conspic-
uously devoid of discernible lobular luminal structures (Figure 1). This tubular arrangement, distinct from 
the lobular structure common in many teleosts, may facilitate efficient sperm production within the compact 
testicular volume characteristic of this species. The efferent ducts and spermatozoa were observed in the 
ventral domain of the cranial sector (Figure 1a). The cranial expanse hosted abundant spermatogenic germ 
cells, encompassing spermatogonia, spermatocytes, spermatids and spermatozoa interspersed with accom-
panying somatic entities (Figure 1b).

The testis of the robust tonguefish exhibited a distinct spatial organization of spermatogenesis. In the 
cranial region, spermatogonia and Sertoli cells were confined to the tubule periphery near the tunica al-
buginea (Figure 1c). Meiotic spermatocytes, haploid spermatids, and mature spermatozoa were predomi-
nantly found in the inner and intermediate parts of the tubules in this region (Figure 1b-d). Interstitial Ley-
dig cells, responsible for hormonal function, were located in the interstitial spaces between seminiferous 
tubules in the cranial domain (Figure 1d). The caudal region showed a different pattern, with tubular tracts 
containing primarily spermatids (Figure 1e and f). The spatial distribution of spermatogenic cells observed 
in our study suggests a highly organized spermatogenesis process. This arrangement may contribute to the 
species’ ability to maintain reproductive capacity despite having relatively small testes.

P450scc immunolocalization within the testis

The P450scc distribution within the testis of the robust tonguefish was examined using immunohistochem-
istry (Figure 2). Predominantly confined to the cranial region, distinct assemblages of robust positive signals 
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were conspicuously detected within the cytoplasm of the Leydig cells, occupying the interstitial expanse 
between the seminiferous tubules (Figure 2a and a’). Notably, the discerned immunopositive signals re-
mained conspicuously absent within the distal precincts of the tubules where the spermatogonia and Sertoli 
cells reside. Similar to the observations from the cranial region, the regions encompassing the interstitial 
Leydig cells surrounding the tubules exhibited strong positive signals indicating P450scc activity (Figure 
2b and b’). The localization of P450scc-positive cells in the interstitial spaces indicates concentrated areas 
of steroidogenesis. This distribution pattern may allow for efficient hormone production, potentially com-
pensating for the reduced testicular volume in this species.

Discussion

Our findings on the testicular structure and steroidogenic cell distribution in robust tonguefish contribute 
significantly to the understanding of reproductive diversity in teleosts. This study advances our knowledge 
in three key areas: (1) structural adaptation of testes in species with reduced gonad size, (2) spatial orga-
nization of spermatogenesis in tubular testes, and (3) potential mechanisms for efficient steroidogenesis 
within a compact testicular volume. The unique tubular arrangement and the concentrated distribution of 
P450scc-positive cells provide insights into how testicular morphology and function can evolve to meet 

Figure 1. 
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Fig. 1 Histological structure of the testis in the robust tonguefish showing cranial (a-d) and caudal regions (e-f). a Comprehensive 
overview of the cranial region at low magnification. Arrows indicate efferent ducts (ED) filled with spermatozoa. b Seminiferous tu-
bule situated at the peripheral domain of the cranial region. c Higher magnification of the boxed area in b showing detailed structure 
of the seminiferous tubule. Spermatogonia (SG, white arrowheads), Sertoli cells (Ser, black arrowheads), and tunica albuginea (Ta, 
arrows) are indicated. d Seminiferous tubule positioned within the internal realm of the cranial region. Leydig cells (Lc) are outlined 
by dotted lines and indicated by white arrowheads. e Macroscopic depiction of the caudal region at low magnification. f Detailed ex-
amination of the inset in panel e at augmented magnification. Abbreviations: SG, spermatogonia; SC, spermatocyte; ST, spermatid; 
SZ, spermatozoon; Ta, tunica albuginea of the testis; Ser, Sertoli cell; Lc, Leydig cell; ED, efferent duct; BC, blood cell.
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specific reproductive demands. These observations offer a comparative framework for understanding testic-
ular adaptations across diverse teleost species, particularly those with small gonads. Our study underscores 
the importance of investigating species with unique reproductive characteristics to comprehend the full 
spectrum of reproductive adaptations in teleosts.

This study comprehensively investigated the intricate testicular architecture of the robust tonguefish. 
Meticulous histological analysis revealed a distinctive feature where the species’ testes follow a tubular par-
adigm. Numerous actively steroidogenic cells displaying P450scc antibody reactivity within these compact 
testicular structures were conspicuously localized within the interstitial milieu.

Teleosts exhibit remarkable diversity in testicular morphology (Callard et al. 1978). The testicular orga-
nization in teleosts can be broadly categorized into two principal types: tubular and lobular, a classification 
framework elucidated by Nagahama. (1983). While the lobular-type testes predominate across various fish 
species, the tubular arrangement is a distinctive hallmark of the specific bony fish taxa, including salmonids, 
cyprinids, and Lepisosteidae (Uribe et al. 2014). Moreover, within the tubular classification, a subdivision 
emerges, namely the unrestricted and restricted types, defined by the spatial spermatogonia distribution, as 
elaborated by Grier et al. (1980). As described in the Introduction, the unrestricted spermatogonial type has 
been reported in the tubular testes of the Senegalese sole (Sole senegalensis) (García-López et al. 2005). How-
ever, the general histological observations in this study revealed that the tubular testes of the robust tonguefish 
were restricted to the spermatogonial type. Additionally, we observed that the developmental progression of 
spermatogenesis underlies zonation in the testes of the robust tonguefish; the early and advanced stages of 
spermatogenic germ cells were found in the periphery of and centrally in the tubules, respectively. This testis 
type is found in higher teleosts, such as Atheriniformes, Cyprinodontiformes, and Beloniformes (Parenti & 
Grier 2004; Sàbat et al. 2009). Thus, the testes of the red tonguesoles are rare among bony fishes.

While the intricate relationship between the testicular type and testis size in teleosts remains unclear, 
a general trend has emerged wherein promiscuous species tend to exhibit relatively larger testes than their 
monogamous counterparts (Stockley et al. 1997). A case in point can be found in the Dover sole (Solea 
solea), where the pairing observed during spawning (a manifestation of monogamy) entails a male posi-
tioned beneath a female (Baynes et al. 1994; Devauchelle et al. 1987) .

The robust tonguefish distinguishes itself through a unique anatomical aspect. Its genital pores are in 
close proximity, a peculiarity attributed to the distinctive genital pore localization of the sole (dorsal and 
ventral surfaces in males and females, respectively), setting it apart from the arrangement observed in other 
teleosts. This distinctive feature led us to hypothesize that the diminutive and tubular-type testes observed 
in the robust tonguefish are adapted to support the spawning behavioral characteristic of monogamy despite 
the absence of documented investigations into such reproductive behavior.

Figure 2. 
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Fig. 2 Immunohistochemical localization of P450scc in the testis of the robust tonguefish. a Low magnification view of the cranial 
region. a’ Higher magnification of the boxed area in a showing intense brown immunopositive signals indicated by white arrow-
heads. b Low magnification view of the caudal region. b’ Higher magnification of the boxed area in b showing intense brown immu-
nopositive signals indicated by white arrowheads. Abbreviations: P450scc, cholesterol side-chain cleavage enzyme.
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The fact that gonads serve as the primary locus for producing sex steroid hormones inevitably evokes a 
pertinent question: Do the conspicuously diminutive testes of the sole fishes possess the inherent capability 
to yield a substantial quantum of steroid hormones? In the Senegalese sole, the plasma steroid hormone lev-
els in males demonstrate consistent detectability across the annual cycle (García-López et al. 2006; García-
López et al. 2007). Consequently, a working hypothesis assumes that the relatively modest dimensions 
of the sole testicular apparatus may harbor exceptional proficiency in synthesizing sex steroid hormones. 
This investigative endeavor entailed a meticulous survey of the P450scc immunolocalization, an elemental 
enzyme pivotal for orchestrating steroid hormonal biosynthesis (Miller 1988), within the testicular domain 
of the robust tonguefish. Conspicuously affirmative signals confined to the discrete agglomerations of the 
interstitial Leydig cells confirmed this finding. Intriguingly, the distribution density of these affirmative sig-
nals per unit area within the testis eclipses has been observed in analogous teleosts (Kobayashi et al. 2005; 
Miura et al. 2008), thereby cogently reinforcing hypothesis as mentioned above. This compelling corrob-
oration prevails despite the notable absence of specific accounts detailing the aggregate steroid hormone 
yield per gonadal unit within this singular sole species.

In the contemporary realm of aquatic science, an effervescent surge exists in research dedicated to the 
enigmatic sole fish, primarily driven by their far-reaching significance in global aquatic ecosystems. Nota-
bly, within the domain of the half-smooth tongue sole (Cynoglossus semilaevis), a robust genomic research 
infrastructure has been meticulously cultivated, encompassing pivotal elements such as the draft genome 
databases and EST libraries (Cerdà et al. 2010; Cerdà et al. 2008; Chen et al. 2014). However, a conspicu-
ous void persists in a foundational lack of fundamental reproductive insights on the sole fish despite their 
marked divergence from other piscine taxa, including the Pleuronectiformes. In our understanding, a glar-
ing hiatus pertains to the intricate orchestration of reproductive processes in the sole fish, emphasizing on 
their testicular dimensions, which have remained largely uncharted because of their diminutive proportions.

Future research should focus on comparative studies across tonguefish species to elucidate evolutionary 
patterns of testicular structure and function. Additionally, investigating the relationship between testicular 
morphology and reproductive behavior, as well as quantitative analyses of steroid hormone production in 
relation to testis size, could provide further insights into the adaptive significance of these unique gonadal 
characteristics in teleosts. 
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