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Abstract European seabass (Dicentrarchus labrax L.) is one of the most commercially important marine 
fish species and is widely farmed in several Mediterranean regions. For a long period, researchers have 
focused on finding functional feed supplements that maximize the productivity and profitability of seabass 
farming. This article will primarily focus on reviewing the beneficial effects of selected promising feed 
additives and their possible application in the aquaculture of European seabass, such as organic acid salts 
(sodium butyrate, sodium propionate, potassium diformate, and sodium diformate), taurine, astaxanthin, 
and some selected macroalgae such as Ulva spp., Gracilaria spp., and Pterocladia capillacae. This review 
also highlights the optimal dietary supplementation dose for different sizes of European seabass. Their 
beneficial effects on growth, feed utilization, biochemical composition, health status, immune responses, 
gut microbiome, intestinal integrity/histomorphology, and skeletal muscle cellularity were also discussed. 
The literature data will spotlight the application of these dietary supplements for farmed European seabass, 
which may facilitate monitoring of adequate fish health status, exploit their advantageous effects and 
potentially assist in the formulation of aquaculture feeding strategies.
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Introduction

With the rapid expansion of aquaculture industry worldwide, special attention is now being paid to the 
application of efficient feeding strategies for faster and better yields and efficiency of aquaculture opera-
tions. Envisioning a more sustainable aquaculture development, several efforts have further been made to 
minimize the amount of the fishmeal ingredient in aquafeeds. Thus, feed industry was forced to explore 
multiple alternative protein sources and or feed additives (Turchini et al. 2019). In several countries, aqua-
culture activities are exposed to the risk of diseases or reduced productivity because of the intensified use of 
plant-based diets as alternatives to fish meal (FM)-based diets (Colombo et al. 2022). Developing fish feeds, 
particularly for carnivorous species with low levels of FM and/or fish oil (FO), without compromising 
performance or health, is a crucial issue to consider. Moreover, feeds is the most expensive component in 
aquaculture. Therefore, in recent decades, there has been growing interests in using different feed additives/
supplements to enhance growth performance and control infectious diseases (Açar et al. 2019; Yilmaz et 
al. 2012, 2016, 2022) which have positive effects on the productivity of aquatic-farm. Feed supplements 
represent various components that promote ingestion, nutrient absorption and assimilation, growth, and 
health status by influencing physiological functions such as immune competence, disease resistance, stress 
tolerance and reproduction (Bai et al. 2015). Feed additives are also required for prophylactic usage to 
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avoid disease incidence by supporting and improving the immune system to fight infections and emergent 
pathogens (Encarnação 2016; Alemayehu et al. 2018). Functional feed additives can be described as dietary 
components that provide health benefits, and maximize the performance or product quality of target aquatic 
animals (Irkin 2019) even when using fish meal-based diets (Saleh et al. 2020). 

There is currently active research in several countries on a wide variety of fish/shrimp feed additives as 
natural growth promoters, due to the ban on the use of antibiotics in fish production (Van Doan et al. 2023). 
Natural growth promoters may be supplemented to promote gut health and maximise nutrient utilization, 
leading to cost-effective, safe, and profitable production (Nuez-Ortín 2013). 

The European Sea bass (Dicentrarchus labrax L.) is a strictly carnivorous marine fish, highly mar-
ket valued, and commercially cultured in the Mediterranean region (Vásquez and Muñoz-Cueto 2014). 
Owing to the continuous demand for seafood, it is expected that the production rates of these fish species 
will continue to increase in the foreseeable future. The use of feed supplements in the diet of seabass is a 
promising avenue for enhancing feed and nutrient utilization, leading to improved growth and immunity 
(Abdel-Mohsen et al. 2018; Wassef et al. 2017, 2020, 2021; Saleh et al. 2018, 2020; Martins et al. 2023). 
In sea bass farming, similar to other cultured marine species, feed cost represents the largest proportion of 
production expenses. Therefore, minimizing feed costs without compromising fish growth performance is 
essential. Thus, the use of certain feed additives will allow farmers to maximize the performance and pro-
ductivity of European seabass and improve the economics of its farming. 

This review article was prepared to light on and summarise the results from the published literature on 
selected feed additives for European seabass, including some organic-acid salts, taurine, astaxanthin and 
selected macroalgae, such as the green: Ulva spp. and the red algae: Gracilaria spp. and Pterocladia capil-
lacae. These potentially important feed supplements were chosen among the wide range of functional feed 
supplements because of the substantial amount of information available on their use in European seabass 
farming. The optimal dietary inclusion dosage and the effects of these feed supplements on growth, feed 
utilization, health status, biochemical composition, immune responses, gut microbiome, intestinal mor-
phology, and muscle cellularity are summarized in Table 1. 

Organic-acid salts

In general, most organic acids are short-chain fatty acids (SCFAs), their salts are chelated to minerals (Ng 
and Koh 2017), and they can be used as acidifiers. SCFAs or their salts can increase the bioavailability of 
dietary minerals by chelating them. They show antimicrobial activity, and accordingly, they are considered 
feed preservatives (Hoseinifar et al. 2017; Tran et al. 2020). Although dietary acidifiers have been exten-
sively investigated in various terrestrial animals, studies on their use in aquatic animals have intensified 
only during the last two decades (Ng and Koh 2017). The use of acidifiers in aquaculture nutrition has been 
the focus of nutrition research and commercial practice (Abdel Mohsen et al. 2018; Dawood et al. 2018; 
Abdel-Latif et al. 2020; Wassef et al. 2017, 2020, 2021; Van Doan et al. 2023; Martins et al. 2023). In the 
near future, their commercial use is expected to significantly increase due to the worldwide ban on the use 
of antibiotics (Van Doan et al. 2023; Tran et al. 2020). 

Previous trials on using organic acids/salts as feed additives revealed their ability to reduce the 
pH of both the feed and the animal stomach (which leads to increased release of proteolytic enzymes 
in the stomach and the small intestine), and impair the growth of pathogenic organisms (Ng and Koh 
2017; Hoseinifar et al. 2017). Moreover, acidifiers can act as an energy source in the small intestine 
and beneficially modulate gut microbiota (Nuez-Ortín 2013; Abdel-Mohsen et al. 2018), by reducing 
pathogenic bacteria, and increasing lactic acid bacteria (LAB) colonization (Lückstädt 2008a, b). Ace-
tate, propionate, and butyrate are the dominant SCFAs in the fish gut, and are important metabolites in 
energy homeostasis, metabolism, and maintenance of gut health (Tran et al. 2020). The stimulation and 
activation of digestive enzymes, improving the absorption of nutrients, and antimicrobial effects are 
the most important modes of action of dietary acidifiers (Sardar 2020; Tran et al. 2020). Various acidi-
fiers have been used as growth promoters because they can promote higher protein digestibility, better 
feed conversion efficiency, boost the immune response, and reduce mortality rates (Nuez-Ortín 2013). 
This implies that the acidifiers used in aquafeeds can enhance animal health status and performance, 
reduce antibiotic usage, and finally maintain resource efficiency, farm profit, and therefore aquaculture 
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sustainability (Abdel-Tawwab et al. 2021; Abdel-Latif et al. 2020).
It is noteworthy that using optimum levels of acidifiers in aquafeeds is extremely important, because ex-

cess dietary levels of acidifiers can reduce both feed palatability and feed intake, and may, therefore, lead to 
adverse effects on animal performance (Ng and Koh 2017). Typically, organic acids/salts are supplemented 
in the developed feed at a dosage between 0.1% and 1.0% (Hoseinifar et al. 2017). Other researchers have 
defined the dietary dosages of organic acids/salts to be up to 2% (De Schryver et al. 2010; Rimoldi et al. 
2016), however, this might have been reasonable for research purposes. Nonetheless, many factors such 
as the fish (species, size, and physiological status), organic acid salt (form and inclusion levels), diet com-
position, and rearing conditions may affect the growth-promoting effects of acidifiers used in fish nutrition 
(Alemayehu et al. 2018; Ng and Koh 2017).

A limited number of acidifiers have been tested for European seabass, to determine their effects on the 
fish performance and general health status. Among the most evaluated organic salts for European seabass 
are: sodium butyrate, sodium and calcium propionate, potassium and sodium diformate. Positive perfor-
mance results for these organic salts have been documented in several previous trials (Rimoldi et al. 2016; 
Abdel-Mohsen et al. 2018; Wassef et al. 2017; Hussein et al. 2020; Wassef et al. 2020, 2021). These studies 
suggest that these organic salts are palatable, digestible, and suitable acidifiers for this fish species, and ac-
cordingly, as a promising alternative to antibiotics in aquafeeds (Sardar 2020; Tran et al. 2020). Therefore, 
the use of these acidifiers in European seabass feeds could contribute to improvement in fish performance, 
fish health, farm profit, and resource efficiency. In this section, we will focus on the effects of dietary sup-
plementation with these specific organic salts on European seabass performance.

Sodium butyrate

Sodium butyrate (SB) is a salt of SCFA butyric acid and one of the most commonly used organic acid salts 
in animal feeds because it is stable and has much less odour (Ng and Koh 2017). It is produced after the 
fermentation of carbohydrates by anaerobic microflora in the hindgut and is considered an important energy 
source for the epithelial cell lining of the gastro-intestinal tract (GIT) of animals and humans (Hamer et al. 
2008). The uptake of dietary SB produce multiple nutritional functions, particularly in the GIT of animals, 
induces differentiation of epithelial cells, inhibits mucosal apoptosis and, raises the proliferation index of 
the intestinal crypts (Hamer et al. 2008; Robles et al. 2013). Results from the published literature have in-
dicated that the gut health of farmed fish/shrimp is of vital importance for its well-being and performance; 
hence, butyrate has received significant consideration for its multiple advantageous effects on host energy 
metabolism, anti-inflammatory properties, and being a potential immunomodulatory substance (Liu et al. 
2017; Ahmed and Sadek 2015; Abdel-Mohsen et al. 2018). 

It has been reported that using butyrate as a feed supplement improves the availability of many indis-
pensable amino acids and nucleotide derivatives and enhances fish growth (Robles et al. 2013). Recently 
a published report showed that dietary supplementation with SB nanoparticles also stimulates intestinal 
functions and health of Nile tilapia, because of improved intestinal villi and increased absorptive surface 
area (Abdel-Tawwab et al. 2021). In addition, SB dietary supplementation has resulted in better nutrient 
utilization, enhanced health status and improved fish growth performance (Abdel-Mohsen et al. 2018; Luz 
et al. 2019). Hamer et al. (2008) showed that butyrate exhibits potential anti-inflammatory properties in 
the hind intestine of animals by modifying transcription factors, which in turn controls the expression of 
inflammatory response genes and exerts other advantageous effects on animal energy metabolism.

Another form of salt butyrate is poly-β-hydroxybutyrate (PHB), the polymer of the SCFA β-hydroxy-bu-
tyrate (β-HB) is a bacterial energy storage compound (De Schryver et al. 2010, 2011; Franke et al. 2017). 
After dietary uptake of PHB, polymers are degraded into oligomers and monomers, reducing the pH in the 
host gut (Defoirdt et al. 2009), which may aid beneficial bacteria to flourish and inhibit the growth of patho-
genic bacteria, thereby enhancing the gut health of the treated animals (Cotter and Hill 2003). 

In several fish species, the results have indicated positive effects of SB on weight gain, feed utilization 
efficiency, nutrient composition, the intestinal microbiota composition, and trophic effects on the intestinal 
epithelium by increasing crypt depth and villi length. Among the previously published studies, dietary 
butyrate has positive effects on European seabass gut health or intestinal integrity (Rimoldi et al. 2016; Ab-
del-Mohsen et al. 2018). De Schryver et al. (2010) declared that diets containing 2% and 5% PHB resulted 
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in the highest weight gain and survival rate and positively modulated the intestinal microbiota of juvenile 
European seabass. In contrast, Rimoldi et al. (2016) showed no significant differences in growth or condi-
tion factors between European seabass fed 0.2% SB-supplemented diet and those fed a non-supplemented 
control diet. However, those authors mentioned that SB exerts an alleviating effect on the inflamed distal 
intestine of seabass fed a 30% soybean meal diet (SBM-induced distal bowel enteritis). Terova et al. (2016) 
emphasized that SB exhibits anti-inflammatory and immune-modulatory properties in European seabass.

Similarly, PHB has been investigated in feeds for juveniles of European seabass, and it was observed to 
enhance growth, survival, disease resistance, and positively altered the microbial composition of their GIT 
(De Schryver et al. 2010; Terova et al. 2016; Franke et al. 2017). This enhancement may be attributed to that 
the fish enzymes in the gastrointestinal tract (partially) degrade PHB into β-hydroxybutyrate oligomers and 
monomers, which inhibit growth of harmful bacteria (De Schryver et al. 2010; Şahin et al. 2021). Moreover, 
the effect of feeding European seabass post larvae (28-d-old) with Artemia nauplii enriched with PHB on 
survival, growth, and immune response was investigated by Franke et al. (2017). These authors demonstrat-
ed that PHB stimulated the expression of some immune-related genes such as antimicrobial peptides in-
cluding dicentracin and hepcidin genes in post larva-stage, thereby protecting the larvae against pathogens.

The efficacy of microencapsulated-SB as a functional diet acidifier was evaluated, for European seabass 
with an emphasis on the effects of SB on growth, nutrient utilization, immuno-competence, gut microbiota, 
and histomorphological features of the intestine (Abdel-Mohsen et al. 2018). The results demonstrated 
that 2 g microencapsulated-SB kg-1 diet exerted multiple positive effects, including promotion of growth, 
survival and feed utilization and elevation of protein deposition, and reduction of lipid content of fish. In ad-
dition, there was an appreciable enhancement in the general health status and immunology indicators such 
as immunoglobulin, respiratory burst activity, phagocytosis, myeloperoxidase, bactericidal, and lysozyme 
activities as compared with the control fish indicating better fish resistance against surrounding pathogens 
(Abdel-Mohsen et al. 2018). Furthermore, measurement of the intestinal sections of seabass revealed that 
the 0.2% SB-supplemented diet increased the muscular layer thickness, villi length, and width, and further-
more, the goblet cells count.  These findings demonstrate the beneficial effects of SB on gut health, inducing 
better disease resistance and growth performance for European seabass fry. In brief, the inclusion of 2 g 
of microencapsulated SB kg-1 feed could maintain fish health status, modulate distal intestinal microbiota, 
and increase cell proliferation in the intestinal crypts of seabass (Abdel-Mohsen et al. 2018). Although the 
mechanisms of action of butyrate are not fully understood, it is assumed that butyrate is involved in the 
complex interaction between fish diet, gut microbiome, and energy metabolism (Robles et al. 2013).

For other finfish, several studies reported significant improvement in growth and feed conversion ra-
tios and other physiological functions when SB or PHB was included in their diets, Robles et al. (2013) 
for gilthead seabream (Sparus aurata); Ahmed and Sadek (2015) for Nile tilapia (Oreochromis niloticus); 
Rodriguez et al. (2017) for red drum (Sciaenops ocellatus); Liu et al. (2017) for grass carp (Ctenopharen-
godon idella); Zhou et al. (2019) for golden pampano (Trachinotus ovatus); Luz et al. (2019) for  Pirarueu 
(Arapaima gigas). 

Sodium/ calcium propionate

The organic salts sodium propionate (SP) and calcium propionate (CaP) are considered natural growth 
promoters, health enhancers, and immuno-stimulators, that can effectively support hygiene and feeding 
in aquatic organisms (Hosseini et al. 2011; Hoseinifar et al. 2017; Tran et al. 2020). However, only a few 
studies have emphasized their beneficial effects on the intestinal microbiota (Ringø 1991; Ringø et al. 2016; 
Wassef et al. 2020) or the intestinal histo-morphological features of fish (Wassef et al. 2020, 2021). The 
composition of gut microbiota is an essential factor for evaluating fish health status, because it is related to 
many biological processes that positively affect the nutritional conditions and immunity of the host (Hasan 
and Yang 2019).  

Regarding the European seabass, a recent study on the fry stage, indicated that the addition of 0.2% or 
0.3% SP to the diet could improve growth performance, general health, immunity, and intestinal function 
of fish (Wassef et al. 2020). These authors reported a 34% increase in weight gain in fish fed a dietary level 
of 0.3% SP associated with a decline in feed conversion ratio, compared with the control fish (CTR). More-
over, dietary administration of 0.3% SP increased the carcass protein content and improved immunity of 
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European seabass compared with CTR fish. European seabass fed the 0.2% or 0.3% SP-added diets had also 
showed a 95% microbial count reduction in their distal intestine compared with CTR fish. Vibrio spp. disap-
peared (zero or negligible) in fish fed with 0.2% and 0.3% SP diets, and the faecal coliform bacteria count 
gradually diminished to zero in the 0.3% SP-fed fish. In addition, there was enhancement in the fish intesti-
nal histo-morphology in proximal, mid, and distal sections. The largest villi area and goblet cell counts were 
observed in fish fed with 0.3% SP or 0.2% SP diet compared with CTR fish (Wassef et al. 2020).

For other fish species, several studies demonstrated the beneficial effects of dietary propionic acid/
salts supplementation on growth, feed utilization, immune response, and expression of immune-related and 
growth-related genes. Among them may be mentioned: Ringo (1991) for Arctic Charr (Salvilinus alpinus 
L.); Hassaan et al. (2014) for Nile tilapia (Oreochromis niloticus); Hoseinifar et al. (2016) for Caspian 
white fish (Rutilus frisiikutum); Safari et al. (2016) for Zebra fish (Danio rerio).

Sodium and potassium diformate 

Among acidifiers, formic acid is produced physiologically through animal metabolism and has corrosive 
properties and stronger acidity than other SCFAs (Luise et al. 2020). Formic acid and its salts may acci-
dentally enter aquaculture diets as a component of preserved feed items such as fish silage or when they 
are added for a specific purpose, such as acting as a non-antibiotic growth stimulator (Ng and Koh 2017; 
Hoseinifar et al. 2017). Recently, formic acid and its salts, especially sodium and potassium diformate 
(NaDF, KDF), have been evaluated as beneficial and promising dietary supplements in aquafeeds (Hussein 
et al. 2020; Tran et al. 2020). Both NaDF and KDF are widely used as feed acidifiers because of their active 
ingredients, relative stability, and ease of handling in extruded feeds (Ng and Koh 2017). 

Previous studies have explained that dietary NaDF and KDF can decrease the pH of gut digesta (Lück-
städt 2008a), thus providing energy for renewing the intestinal epithelia which may improve the digestibili-
ty of proteins and minerals (Hoseinifar et al. 2017). NaDF increased feed intake, enhanced the bioavailabil-
ity of amino acids, and increased the digestibility of lipids, proteins, and amino acids (Morken et al. 2011). 
These effects are the primary reason for enhancing growth and feed utilization in fish (Yúfera et al. 2012). 
Formate salt can improve animal health because of its strong antimicrobial effects on pathogens and posi-
tive modulation of the gut microbiome (Lückstädt 2008b; Defoirdt et al. 2009; Luise et al. 2020). This ben-
eficial modulation of microbiota and improvement of gut health may be an additional reason for improving 
the growth performance and feed efficiency of fish (Hoseinifar et al. 2017). NaDF growth-promoting effect 
is mainly based on its strong antimicrobial effect against several bacteria, including total anaerobic, lactic 
acid, and coliform bacteria (Øverland et al. 2000), and based on its potential to maximize the digestion, 
absorption, and utilization of ingested nutrients (Lückstädt 2008a, b).

There is limited information on the effects of NaDF or KDF inclusion in European seabass feeds, with 
only three recent reports published in this context (Wassef et al. 2017; Hussein et al. 2020; Wassef et al. 
2021). In a dose/response growth trial on NaDF supplementation in the feed of juvenile European seabass, 
Wassef et al. (2017) concluded that 3 g/kg is the best economical and cost-effective inclusion dosage for 
fish weighing approximately 5 g. The addition of 0.3% NaDF promoted growth, improved feed utilization 
efficiency and survival, and enhanced basal health status and, consequently, overall fish performance. How-
ever, the major nutrient composition and the amino acid profile of European seabass were not significantly 
altered by the addition of dietary NaDF. On the basis of these results, this dose (0.3% feed) of NaDF was 
administered to juvenile seabass (with an initial weight of 14 g) fed a reduced amount of FM (20%) within 
a high plant-mix diet (Wassef et al. 2021). Their results suggest that supplementation of a plant-based diet 
with 0.3% NaDF significantly improved the growth and striated muscle structure of juvenile European sea-
bass. Similar results have shown the potential for KDF application in diets for juveniles’ seabass to serve as 
a growth promoter and a general health booster (Hussein et al. 2020).

Several previously published studies have reported the potential efficacy of dietary NaDF- or KDF-sup-
plementation in improving growth performance, feed efficiency, and modulating the immune competence 
indicators in other fish species: Zhou et al. (2009) for hybrid tilapia (Oreochromus niloticus ♀ X O.aureus 
♂); Abu Elala and Ragaa (2015) for Nile tilapia (Oreochromis niloticus); Morales et al. (2016) for rainbow 
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trout (Oncorhynclus mykiss); Rodriguez et al. (2017) for red drum (Sciaenops ocellatus).
It is noteworthy to mention that most organic acids commercially used in the food and feed industry are 

produced synthetically by manufacture worldwide and are available in the market at reasonable prices. For 
example, ADDCON Co., Norway for Na/K diformate and Na/Ca propionate and Shandong Kejian Chemi-
cals, Co., China,  for sodium butyrate, among others.

Taurine

Taurine (TRN) (2-amino-ethane-sulfonic acid) is a neutral β-amino acid freely distributed throughout most 
of the tissues of living organisms. Taurine exists naturally, in animals, including mammals, birds, fish, and 
aquatic invertebrates such as oysters and mussels. Although plants contain less than 1% of the taurine lev-
els found in animals, the most taurine-rich plants are algae, followed by fungi and other terrestrial plants 
(Salze and Davis 2015). High taurine levels naturally occur in seafood and meat, and many vertebrates can 
synthesize taurine (Salze and Davis 2015). TRN is derived from methionine via cysteine, and generally, 
the liver is the primary organ capable of synthesizing TRN in fish (Sampath et al. 2020a). Taurine can be 
produced either by extraction and purification from taurine-rich sources or by chemical synthesis (El-Sayed 
2014; Salze and Davis 2015). Historically, TRN has been listed as an approved ingredient for human and 
animal feeds in several countries.

TRN has several benefits, for example, free TRN can be considered as a fish olfactory stimulus, which 
increases feed consumption and is therefore widely used as a feed attractant (Carr 1982). Huxtable (1992) 
mentioned that TRN is also well known for its vital role in lipid metabolism, where it improves fat ab-
sorption in the intestine by inducing bile acid synthesis and cholesterol degradation. Numerous studies on 
fish have also shown that TRN has an effective activity in eyesight (Kuzmina et al. 2010; Shen et al. 2018, 
2019). TRN is known as a functional nutrient based on studies that have emphasized that it exhibits several 
biological and physiological roles in osmoregulation, membrane stabilization, and modulation of cellular 
calcium levels in fish, and it acts as an anti-inflammation and anti-oxidation agent (Salze and Davis 2015). 
The effects of TRN on fish and shrimp nutrition, metabolism, and physiology have been extensively inves-
tigated (Huxtable 1992; Kuzmina et al. 2010; El-Sayed 2014; Shen et al. 2018, 2019; Sampath et al. 2020a; 
Kotzamanis et al. 2020a, b; Wassef et al. 2021).

The beneficial effects of TRN as a dietary additive to promote the growth of cultured aquatic organ-
isms have been evidenced in several studies (Kim et al. 2005; Gaylord et al. 2006, 2007; Qi et al. 2012; 
El-Sayed 2014; Salze and Davis 2015; Sampath et al. 2020a), as well as on the health, muscle hardness 
and reproduction of fish (Al-Feky et al. 2016a, b; Shen et al. 2018, 2019; Saleh et al. 2020; Kotzamanis et 
al. 2020a, b; Sampath et al. 2020b; Wassef et al. 2021). In particular, TRN has also been investigated as 
a functional dietary supplement for its positive effects on fish well-being, immunity competence, and gut 
health (El-Sayed 2014; Salze and Davis 2015; Sampath et al. 2020a). However, the advantages of TRN are 
species-specific and dose-dependent, relative to its dietary concentration and period of feeding (Salze and 
Davis 2015; Shen et al. 2018). Furthermore, the response of marine fish to dietary TRN is affected by fish 
size (life stage), assuming that TRN is considered an essential amino acid for larvae and small juvenile fish 
that consume foods rich in TRN during their early life stages (Sampath et al. 2020a). Dietary TRN supple-
mentation may result in optimum growth performance during the juvenile stage of fish because of the high 
metabolic functions related to growth during this period (Salze and Davis 2015).

Approximately 0.2%-1.0% dietary TRN have been reported for the optimum performance of European 
seabass, depending on fish size and age. Juvenile seabass require 1% TRN content in their diet (Feidan-
tsis et al. 2014; Martins et al. 2019; Kotzamanis et al. 2020a, b; Saleh et al. 2020), whereas Martinez et 
al. (2004) and Rimoldi et al. (2016) used a dose of 0.2% and/or 0.3% for fry and larger fish, respectively. 
The addition of dietary TRN is also beneficial (at 1%) for European seabass weighing 5 g fed FM-based 
diets (Saleh et al. 2020), and in a reduced-FM plant-based diet for juvenile seabass (Wassef et al. 2021). 
Several studies have demonstrated that dietary TRN addition to plant-based or FM-based diets for seabass 
might have a positive impact on growth performance and general health status of fish (Martinez et al. 2004; 
Rimoldi et al. 2016; Martins et al. 2018, 2019, 2021, 2023; Ceccotti et al. 2019). In addition, Wassef et 
al. (2021) suggested that TRN has immuno-regulatory properties in juvenile seabass when administrated 
at the appropriate level (1%). Feidantsis et al. (2014) showed that TRN-enriched feeds (up to 1%) had 
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highly protective mechanisms, particularly in the liver of seabass. It has been reported that dietary TRN 
supplementation can reduce intestinal inflammatory and apoptotic processes in seabass and improved the 
antioxidant response (Martins et al. 2019; Sampath et al. 2020b). For example, Rimoldi et al. (2016) found 
that 0.2% TRN led to some mitigating effects on the inflammation of the distal intestine of seabass formed 
after being fed a 30% soy protein diet 

In contrast, other studies have illustrated that reduced-FM diets supplemented with 1% TRN did not sig-
nificantly improve juvenile seabass growth or feed utilization efficiency (Feidantsis et al. 2014; Coutinho et 
al. 2017; Kotzamanis et al. 2020a, b).

A high volume of work has been published on the beneficial effects of TRN-enriched diets on the growth 
and efficiency of feed utilization for other fish species, particularly for fish fed with high plant protein-con-
taining diets. Among them: Atlantic salmon (Salmo salar) (Espe et al. 2012), turbot (Scophthalmus max-
imus) (Qi et al. 2012); Nile tilapia (Al-Feky et al. 2016a, b; Shen et al. 2018), white seabream (Diplodus 
sargus) (Magalhães et al. 2019), grouper (Epinephelus icoioides) (Shen et al. 2019); and African catfish 
(Adeshina and Abdel-Tawwab 2020). 

Astaxanthin

Astaxanthin (AST) is a naturally occurring carotenoid in the marine environment, classified as a xantho-
phyll that provides the rich pink colour observed in various plant and aquatic animal species, including 
salmon muscles and the carapace of shrimps, crabs, and lobsters (Naguib 2000; Yamashita 2013). The green 
microalgae Haematococcus pluvialis and Monoraphidium spp. and the red yeast Phaffia rhodozyma and 
Xanthophyllomyces dendrorhous are among the microorganisms that can biosynthesize AST in appreciable 
amounts, and they have gained considerable interest as sources of natural AST (Akhavan and Jafari 2017). 
However, the highest level of AST produced by the yeast was lower than the amount found in microalgae 
or crustaceans (Yamashita 2013), so these microalgae may offer a continuous source of AST, when mass 
produced. AST is a nutrient (an oxidized form of ß-carotene) with unique cell membrane actions and di-
verse benefits and therefore commercially used in various industries such as poultry, aquaculture, food, 
cosmetics, pharmaceuticals, and nutraceuticals (Yamashita 2013; Lim et al. 2018).

Rahman et al. (2016) and Lim et al. (2018) reported that fish, like other animals, have poor ability to 
biosynthesize their own AST demand de novo and must obtain this pigment from their diet. AST is perhaps 
the best-known pigmenting agent routinely added to certain aquafeeds to boost and enhance the coloration 
of some farm-raised species such as ornamental fish (Bjerkeng 2008) and shrimp (Zhang et al. 2013; Wade 
et al. 2017). The natural pigmentation of the flesh and skin of farmed fish caused by AST is considered an 
important consumer criterion or quality and price.

Numerous published studies have shown that AST, as a carotenoid, is a potent antioxidant equal to 
or greater than that of vitamin E when supplemented to fish diets, and exhibits various benefits, among 
which improving flesh or skin colour (Naguib 2000; Yamashita 2013; Lim et al. 2018; Yilmaz et al. 2013). 
AST, predominantly through its antioxidant effects, enhances the immune response and protects fish vision 
(Higuera-Ciapara et al. 2006; Li et al. 2007; Yamashita 2013; Lim et al. 2018). Because AST has unique 
bioactive properties, it exerts several functions in fish, including growth enhancement (Storebakken and 
Goswami 1996), improvement of broodstock performance (Ahmadi et al. 2006; Palma et al. 2017), immune 
function, and increased resistance to disease (Amar et al. 2012; Yamashita 2013; Lim et al. 2018). 

Due to the high need for AST in the animal feed sector, particularly aquaculture and poultry, AST is 
chemically synthesized on a large scale. In terms of pigmentation, the microbial sources of carotenoids 
are comparable to those from synthetic sources (Gomes et al. 2002). It is worth noting that some authors 
suggest that esterified AST sourced from algae could be twice as effective as synthetic AST for the pig-
mentation of red seabream (Pagrus major) (Higuera-Ciapara et al. 2006), in addition to providing a better 
growth rate in European seabass (Saleh et al. 2018). Nevertheless, the interest shown by the aquaculture 
industry for natural sources of AST has been growing because of the increasing demand for fish fed on 
natural pigments (Lim et al. 2018). 

Saleh et al. (2018) investigated the effect of feeding European seabass with three concentrations of AST 
(60, 80 and 100 mg/kg diet) for 60 days. The results indicated that fish fed diets with 100 mg of AST ex-
hibited a significant improvement in growth rate, feed utilization efficiency, percentage survival, and total 
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protein content. Furthermore, as the amount of dietary AST increased, the activity of the hepatic anti-oxi-
dant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased. The results also 
revealed that by increasing the AST inclusion levels in diet, an increase in the intestinal mucosal phagocytic 
and lysozyme activities was observed, which indicate the efficiency of AST as an immuno-stimulant agent 
in seabass diet. Goda et al. (2018) compared the effects of three dietary concentrations of two natural carot-
enoid sources, namely marigold flower meal and crab waste meal, with two synthetic AST-supplemented 
diets. Their results indicated that the dietary inclusion of crab waste meal or marigold flower meal at levels 
of 10 or 0.2 g/kg diet, respectively, could improve growth, increase total carotenoid content, increase anti-
oxidant biomarkers and reduce the stress of European seabass fry as efficiently as the commercial synthetic 
AST. They concluded that the total carotenoid content in seabass muscles significantly increased with 
increasing dietary carotenoid levels, regardless of the carotenoids source. Both studies have demonstrated 
that the improvement in growth performance parameters of seabass fed with diets supplemented with AST 
may be due to its major role as an antioxidant and its involvement in intermediary metabolism of fish (Ya-
mashita 2013; Lim et al. 2019). AST may further adjust the capabilities of intestinal microflora to break 
down the indigestible components to extract more nutrients and increase the activity of digestive enzymes 
(James et al. 2006).

The advantages of using AST-enriched diets were also evidenced for other fish species, including rain-
bow trout juveniles (Rahman et al. 2016), Asian seabass (Lates calcarifer) (Lim et al. 2019; Lim et al. 
2021), red porgy (Pagrus pagrus) (Kalinowski et al. 2011), gilthead seabream (Sparus aurata) (Wassef et 
al. 2010; Li et al. 2014; Ritu et al. 2023). 

Marine macroalgae  

Algae (micro- and macro-algae) are natural aquatic plants with great potential as aquafeed ingredients, 
because of their high contents of nutrients and bioactive compounds (Ferreira et al. 2021). Therefore, the 
use of algae in livestock and human nutrition was emphasized several years ago (Montgomery and Gerking 
1980). Global production of macroalgae, in general, has been dominated by marine species that grow in 
both marine and brackish waters and show highly variable nutritional value (Wan et al. 2019; Camare-
na-Gόmez et al. 2022). 

Marine macroalgae are rich sources of several nutritional components with great potential to increase 
the health status of farmed fish (Naiel et al. 2020; Ferreira et al. 2021; Fernandes et al. 2022). They contain 
various bioactive compounds such as carotenoids, polyunsaturated fatty acids, alginate, agar, carrageenan, 
laminarin and fucoidan and peptides such as taurine, carnosine, and glutathione (Naiel et al. 2021; De 
Alencar et al. 2018). They are also rich in several vitamins such as B1, B12, A, C, E, D, pantothenic acid, 
riboflavin, niacin, and folic acid and several minerals (iodine, zinc, sodium, calcium, manganese, iron, po-
tassium, phosphorus, and selenium) (Øverland et al. 2019; Morais et al. 2020; Naseem et al. 2021; Ferreira 
et al. 2021). Primarily, marine macroalgae constitute one of the richest natural sources of antimicrobial and 
antioxidant (Wan et al. 2019; Silva et al. 2020; Naiel et al. 2021; Ferreira et al. 2021). Therefore, the use of 
macroalgae as feed additives in fish feeds has been reviewed by many authors (Øverland et al. 2019; Wan 
et al. 2019; Morais et al. 2020; Naiel et al. 2020; Saleh 2020; Fernandes et al. 2022;  Ferreira et al. 2021; 
Camarena-Gόmez et al. 2022; Abel-Latif et al. 2022) among others. 

Although macroalgae are promising ingredients for aquafeeds, their complex polysaccharide struc-
ture limits their wide use, particularly for strictly carnivorous fish species (Fernandes et al. 2022). In addi-
tion, macroalgae have complex cell walls, which may contain antinutritional factors that may reduce nutri-
ent uptake or result in inflammation of the intestinal tract of fish (Batista et al. 2020b). Castillo and Gatlin 
(2015) recommended the addition of exogenous carbohydrases to plant-based fish diets, to improve nutrient 
digestibility and reduce nutrient excretion in aquatic species. However, Fernandes et al. (2022) suggested 
three pretreatments techniques (physical, chemical and biological) to disrupt algal polysaccharide structure, 
to enhance macroalgal bioavailability in fish, such as European seabass.  Overall, the results published on 
the use of macroalgae meals as feed ingredients for finfish have varied, presumably due to variation in 
macroalgal species, nutritional contents during harvest season, geographical origin, processing, and exper-
imental design (Øverland et al. 2019). Some species of macroalgae can also accumulate large amounts of 
heavy metals (such as arsenic, cadmium or lead) which may limit their use in aquafeeds (Abdallah 2008). 

https://www.sciencedirect.com/topics/engineering/polysaccharides-structure
https://www.sciencedirect.com/topics/engineering/polysaccharides-structure
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However, the measured levels of these heavy metals in many macroalgae species are generally below the 
feed safety limits (Holdt and Kraan 2011; Irkin 2019).

Nutritional studies have also been performed on some farmed fish species, to unravel the impact of 
supplementation of some selected marine macroalgae and their beneficial effects were reported in terms of 
growth performance, immune and antioxidant status, and resistance to stress and bacterial diseases. Ulva 
species (sea/water lettuce) (Chlorophyta), red Gracilaria spp., and Pterocladia capillacea (Rhodophyta) 
are among the promising marine macroalgae that are distributed worldwide (Khalafalla et al. 2015; Ismail 
et al. 2020; Patarra et al. 2019), and have been tested as feed supplement in aquafeeds for many fish species 
(Wassef et al. 2001, 2005, 2013; Fernandes et al. 2022). 

Regarding European seabass, the possibility of using Ulva spp., Gracilaria spp., and Pterocladia capil-
lacea in their compounded feeds was investigated earlier, and several reports have been published (Valente 
et al. 2006; Wassef et al. 2013; Peixoto et al. 2016; Peixoto et al. 2019;  Batista et al. 2020a, b; Fernandes 
et al. 2022). Two studies determined the nutritional value of dried Ulva lactuca and P. capillacea (protein, 
lipid, carbohydrates, and fiber contents; fatty acid and amino acid profiles) and tested three dietary inclu-
sion levels (5, 10, 15%) for fish fry (Wassef et al. 2013). They suggested the dietary inclusion of 5% dried 
U. lactuca or P. capillacea to promote growth, feed utilization efficiency, and reinforce stress resistance 
of European seabass fry (o.5 g). Recently, the same supplementation level of 5% of dried Ulva spp. was 
assessed by Morais et al. (2020) to be adequate in complete pelleted fish diets. However, Valente et al. 
(2006) recommended that Ulva sp. and Gracilaria spp. can be incorporated up to 10% into feeds of Euro-
pean seabass (IW, ca 5g) without affecting the performance of fish. Peixoto et al. (2016) tested a control 
diet against six practical diets supplemented either with Ulva spp., Gracilaria spp., or Fucus spp., at 2.5 or 
7.5% levels, plus an additional diet with a blend of the three seaweeds, each supplemented at 2.5% (Mix). 
Their results indicate that the use of dietary seaweed supplementation alone or in combination improves 
immune and antioxidant responses in European seabass without compromising growth performance. In 
another study, Peixoto et al. (2019) investigated the effect of dietary supplementation of 5% Gracilaria spp. 
aqueous extract (GRA) on European seabass antioxidant capacity and resistance against bacterial infection 
(Photobacterium damselae). They recorded a lower mortality rate in fish fed GRA, increased lysozyme 
activity levels, and decreased lipid peroxidation, suggesting higher antioxidant capacity than in fish fed 
the control diet. They added that dietary GRA induced the down-regulation of hepatic stress-responsive 
heat shock proteins (grp-78, grp-170, grp-94, grp-75), and positively modulate gut health and potentiate 
fish digestive capacities. More recently, Bassos et al. (2021) evaluated the inclusion of either dried algae 
Gracilaria gracilis at 2.5% and 5% or algal extract at 0.35% levels in the diet of European seabass and 
concluded that the supplementations did not affect growth or feed utilization, haematological profile or 
some metabolic parameters. Nevertheless, dried algae powder (G. gracilis), with a 2.5% inclusion, boosted 
the immune response and protected against oxidative damages by improving enzymatic and non-enzymatic 
responses.  However, the ability of European seabass to effectively digest nutrients from macralgae species 
(e.g., Ulva rigida) is hampered by the high carbohydrate content which negatively influences fish digestive 
enzyme activity (Fernandes et al. 2022). Accordingly, these later authors applied chemical, physical and 
biological treatments on U.rigida, before feeding it to European seabass, which successfully increased the 
protein content and hydrolyzed the polysaccharides structure of the tested alga. They concluded that solid 
state fermentation (SSF) followed by sequential hydrolysis was the more efficient treatment. 

Detailed information on the effects of numerous marine macroalgae on other finfish species has been 
previously reported in many comprehensive reviews (Øver-land et al. 2019; Van Doan et al. 2023; Ritu et 
al. 2023).

Conclusions and future recommendations

The inclusion of organic acids/salts as acidifiers in Eurobean seabass aquafeeds can exert multiple benefi-
cial effects. Therefore, these acidifiers could provide a safer and potent feed supplement to benefit health 
status, reinforce the immune response, enhance nutrients utilization and survival, implying a strong basal 
health-promoting effect on European seabass. The recommended doses are: 2g microencapsulated sodium 
butyrate/kg diet, 3g sodium propionate or sodium/potassium diformate/kg diet. However, the appropriate 
dietary-supplementation level of taurine was evidenced to be 1.0% to promote juveniles seabass perfor-

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/gracilaria
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mance and improve muscle quality even when fed a FM-based diet. Astaxanthin was proven to be a quali-
fied feed additive for seabass fry when added at 0.1 g/kg diet, to promote growth, increase survival, induce 
health benefits and reduce the impact of stressors with no adverse effects on fish performance. With regards 
to marine macroalgae, dried Ulva lactuca and Pterocladia capillacea could be used as feed supplements 
(at 5%) to enhance seabass fry performance, nutrient composition, and stress resistance. Dried algae Graci-
laria gracilis powder, with a 2.5% inclusion, boosted the immune response and protected against oxidative 
damages by improving enzymatic and non-enzymatic responses of fish. Solid state fermentation (SSF) of 
U. rigida was evidenced to be an efficient pretreatment to improve feed efficiency of seabass juveniles 
without affecting growth performance. Finally, the aforementioned studies, in feed-supplements in seabass 
aquaculture, emphasized the need for further research to better understand their use and potential for en-
hancing the sustainability and efficiency of aquaculture operations.
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