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REVIEW

Abstract Microalgae, as a diverse photosynthetic group of microorganisms with substantial ecological 
significance, have enormous potential for use in the food, medicine, and energy industries. However, 
current limitations in cost-effective production restrict their ubiquitous use. The purpose of this 
comprehensive mini-review is to investigate the impact of random mutagenesis techniques on microalgae 
and their biomolecule content, with the intention of improving the productivity and sustainability of cell 
factories for economically viable bioprocesses. Moreover, due to their simplicity and ease of cultivation 
in laboratory settings, microalgae serve as valuable model organisms for numerous scientific studies. 
This study investigates the effects of chemical and physical mutagens on microalgae in order to generate 
a heterogeneous microalgal population with advantageous traits such as increased lipids, proteins, and 
carotenoids, accelerated development, and enhanced nutrient absorption. This study findings will provide 
valuable insights into the manipulation of microalgae to increase biomolecule production and release their 
potential for a variety of applications.
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Introduction

Microalgae are small aquatic microorganisms belonging to the Protista kingdom (Varshney et al. 2015). 
They can undergo photosynthesis and can be found in a range of habitats, including freshwater, marine, 
and terrestrial ones (Metting 1996; Singh and Saxena 2015). Additionally, they are used in numerous com-
mercial and research applications, as well as in the global carbon and nitrogen cycles, and as food for other 
creatures (Chu 2012; Richmond 2008). These microorganisms can create a large variety of products that 
are useful in industry, including carbohydrates, lipids, pigments, and vitamins (Chen et al. 2016; Fathy et 
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al. 2023). Furthermore, they can build a variety of lipids, such as trans-fatty acids, fatty acid methyl esters, 
polyunsaturated fatty acids, and omega-3 fatty acids (Maltsev and Maltseva 2021). As a result, microalgae 
are considered crucial in developing alternative feedstocks to deal with the global food and feed shortage 
(Caporgno and Mathys 2018). Despite the remarkable potential of microalgae for many biotechnological 
uses, the industrialization of microalgae-based goods, such as the biomass itself or additives like pigments 
and polyunsaturated fatty acids, is still confined to high-value specific markets.

The current high manufacturing costs and unsuccessful marketing and sales efforts have hampered the 
growth of the microalgal market and business (Kumar et al. 2020). Challenges in microalgal cultivation 
include poor biomass conversion efficiencies, low target bio-compound productivities, significant envi-
ronmental changes in outdoor settings, culture contamination, and expensive inputs such as culture media 
and energy consumption (Trovão et al. 2019; Trovão et al. 2022). Additionally, exposure to abiotic stress 
factors like temperature and salt negatively impacts overall productivity unless a robust and stress-tolerant 
strain is utilized (Sun et al. 2018; Tredici 2004). To overcome these limitations in industrial-scale microal-
gal biomass cultivation, a multistage optimization strategy is necessary across the entire production and 
processing pipeline (Xue et al. 2021). Adopting a biorefinery and circular economy strategy can lead to the 
redesign of the pipeline, resulting in more commercially viable industrial-scale processes (Lai et al. 2019). 
While only a few naturally occurring microalgal strains possess the desired qualities for successful indus-
trial production in various biotechnological applications (Song and Pei 2018), these strains need further 
improvement to achieve large-scale production and profitability. 

Random mutagenesis and targeting strategies, such as genetically modified organism creation, can be 
employed to develop more resilient and productive strains compared to their wild-type counterparts (Spicer 
and Molnar 2018). However, natural processes like random mutagenesis and adaptive laboratory evolution 
are slow and unfocused, necessitating the use of strategies to accelerate them. These approaches enable the 
creation and selection of mutant organisms with industry-suitable characteristics (Hu et al. 2017). The con-
cept of random mutagenesis involves subjecting microalgae cells to chemical or physical mutagens, leading 
to the generation of a diverse population of mutants with distinct genetic and phenotypic characteristics. 
These mutants undergo a thorough examination to identify desired cellular traits and improved metabolic 
capabilities (Bleisch et al. 2022; Zhang et al. 2018b). Mutation is a natural or synthetic process that occurs 
in all living organisms, including microalgae. It entails changes to a gene’s DNA sequence that can result 
from a variety of things, including mistakes in DNA replication, exposure to toxins or radiation, or viral 
infection (Hlavova et al. 2015). Mutations can bring about notable changes in microalgae, including alter-
ations in cell size, shape, pigment synthesis, and metabolic activity (Damsky and Bosenberg 2017; Sohrabi 
et al. 2016). Some mutations may confer advantages to the microorganism, such as enhanced adaptation 
to specific environments or the ability to produce desired chemicals (Betancourt 2007; Elena and Lenski 
2003). However, the impact of mutations can vary, with some being detrimental or neutral depending on 
their effect on normal microorganism functioning and their specific consequences (Pamilo et al. 1999; Sos-
kine and Tawfik 2010).

Microalgae can be mutated using a variety of techniques as depicted in (Fig. 1), such as genome edit-
ing, adaptive laboratory evaluation, chemical mutagenesis, and physical mutagenesis (Sproles et al. 2021; 
Trovão et al. 2022). Chemical mutagenesis is the process of damaging the DNA of microalgae by exposing 
them to mutagenic compounds, such as alkylating agents or DNA intercalating agents (Cid et al. 2012). 
While microalgal cells are exposed to physical agents, such as high-energy particles or ionizing radiation, 
that can also induce DNA damage (Bleisch et al. 2022). Further genetic engineering techniques such as 
CRISPR/Cas9-mediated genome editing alter the microalgal genome in a particular manner (Fathy et al. 
2021; Patel et al. 2019). The optimal strategy for a particular application will depend on the precise objec-
tives and requirements of the research, as each of these techniques has its benefits and drawbacks. Chemical 
mutagenesis, for instance, is relatively simple and inexpensive, but it has the potential to produce toxic or 
hazardous mutations (Khan et al. 2009). Physical mutagenesis is also quite simple, but it can be expensive 
and requires specialized equipment (Bleisch et al. 2022). Although genetic engineering techniques are be-
coming increasingly specialized and precise, their application can be difficult and time-consuming (Trovão 
et al. 2022).

Mutation serves as a valuable tool for enhancing microalgae strains to improve their growth rate or lipid 
production, thereby benefiting various applications (Senthamilselvi and Kalaiselvi 2022). Furthermore, 
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inducing mutations can lead to the development of microalgae strains with increased tolerance to harsh en-
vironmental conditions such as high salinity or temperature, which can be advantageous for environmental 
applications including bioremediation (Ong et al. 2010). Mutations can be deliberately induced to enhance 
the production of valuable substances like pigments or proteins, providing opportunities for diverse indus-
trial purposes (Cecchin et al. 2022; Schüler et al. 2020). However, it is crucial to carefully evaluate the risks 
and benefits associated with each approach for inducing mutations, and thorough screening and testing of 
the resulting mutants must be conducted. Critical considerations include assessing the stability of mutants 
and ensuring the absence of any toxic or hazardous substances released (Gepts 2002; Sauer 2001). Addi-
tionally, when introducing genetically engineered microalgae into natural ecosystems, it is essential to take 
into account potential adverse ecological and environmental impacts (Bajpai 2022; Henley et al. 2013). 

Consequently, the study of microalgal mutation is a significant and dynamic field that holds immense 
importance in various domains, including business, academia, and environmental protection. To develop 
safe and efficient techniques for generating mutant strains of microalgae and utilizing them across a wide 
range of applications, a comprehensive understanding of the causes and effects of microalgal mutation is 

 

Fig. 1. Illustrating the different techniques utilized in microalgae mutagenesis, emphasizing the 

advantages and disadvantages associated with each method, along with notable examples of their 

application. 

  

Fig. 1 Illustrating the different techniques utilized in microalgae mutagenesis, emphasizing the advantages and disadvantages associ-
ated with each method, along with notable examples of their application
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essential. Mutagenesis serves as a vital approach for altering microalgae to achieve diverse objectives, such 
as biofuel production, pharmaceutical applications, cosmetic formulations, and enhancing nutritional value. 
Therefore, this study provides a comprehensive overview of techniques employed for inducing random 
mutations in microalgae, with a specific focus on chemical and physical methods. To present novel perspec-
tives on random mutagenesis and emphasize their approach and outcomes, published studies spanning from 
1968 to 2022 in this field were thoroughly examined and critically discussed in the subsequent sections.

Random mutagenesis; Techniques and effects

Random mutagenesis usage

Random mutagenesis is an accelerated process that induces mutations in microorganisms by exposing them 
to potent chemical or physical mutagens. The mutants exhibiting desired traits are selected from the result-
ing population (Hlavova et al. 2015). This well-established and accessible technique has been employed 
for over a century, primarily for phenotype-driven mutant generation rather than specific gene alterations 
(Cheng et al. 2019). Ethyl Methane Sulfonate (EMS) has emerged as a frequently used mutagenic agent 
(Flibotte et al. 2010). Random mutagenesis has gained prominence in the field of microalgae due to its ef-
fectiveness in developing strains with improved biomass productivity, target compound production, and en-
vironmental adaptability, requiring less expertise in microalgal genetics (Dinesh Kumar et al. 2018; Tillich 
et al. 2012). However, the isolation of stable mutant strains is often hindered by the occurrence of cell death 
or growth inhibition, with the possibility of reverting to the wildtype state (Garrido-Cardenas et al. 2018).

Factors influencing random mutagenesis

Several factors throughout the pre-, during, and post-mutagenesis stages can influence the outcomes of 
random mutagenesis in microalgae. Carbon and nitrogen availability, as well as the quality and quantity of 
light, are crucial considerations when handling photosynthetic microalgae (Kim et al. 2014; Morschett et 
al. 2017). The type and concentration of the mutagen, duration of exposure, ambient conditions, and other 
variables impact the results of mutagenesis (Bleisch et al. 2022). Parameters such as cell survival rate and 
mutation rate serve as indicators for assessing the effectiveness of mutagenesis, with a desired survival rate 
of around twenty percent to achieve a favorable mutation rate within the surviving cell population (Carino 
and Vital 2022). To minimize the photoactivation of cellular repair pathways, many studies recommend 
keeping the cells in darkness for at least the following night or up to 24 hours after mutagen exposure (Ya-
mamoto et al. 2017). Chemical, physical, or insertional mutagens can be used to induce random mutation in 
microalgae, causing alterations in the organism’s DNA. Mutants with desired metabolic characteristics can 
then be selected from the mutant population.

Types of mutations and their effects

Mutations can occur in various ways, resulting in different impacts on the microorganism. Examples of 
different categories of mutations as shown in (Fig. 2) include (a) Point mutation: A single base pair in the 
DNA sequence is altered, leading to base pair deletions, insertions, or substitutions (Cooper and Krawczak 
1990). (b) Gene mutation: The structure or function of a gene is modified, influencing its functionality 
through variations such as deletions, duplications, and other alterations in the gene sequence (Levine 1993). 
(c) Insertional mutations: These mutations involve the insertion of additional DNA into the genome, poten-
tially affecting the normal function of nearby genes (Van Lijsebettens et al. 1991). (d) Knockout mutation: 
This type of mutation results in the loss or inactivation of a specific gene, often used in research to study the 
function of a particular gene (Tamae et al. 2008). (e) Missense mutation: A single base pair change leads 
to the incorporation of a different amino acid in the protein encoded by the gene, potentially affecting its 
functionality (Benzer and Champe 1962). (f) Nonsense mutation: This mutation involves the insertion of a 
stop codon or a frame shift, resulting in the synthesis of a truncated or non-functional protein (Aoufouchi 
et al. 1996). (g) Silent mutation: A change in the DNA sequence that has no impact on the functionality of 
the protein (Chamary and Hurst 2009). 
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Summary of publications utilizing random mutations in microalgae

Overview of published studies

A comprehensive analysis of the literature revealed a total of 109 publications employing random mutagen-
esis techniques to enhance microalgae. These studies spanned from 1968 to the end of 2022, indicating the 
sustained interest in this field (Fig. 3). Among these publications, 51 employed chemical approaches, 54 
papers utilized physical methods, and 4 utilized a combination of both methods.

Chemical methods

Chemical mutagenesis accounted for 46.78% of the studies utilizing random mutagenesis. Of the chemical 
methods employed, EMS emerged as the most frequently used mutagenic agent, featuring in 34.9% of all 
studies and 75% of the chemical publications. Other chemical agents were also employed, although less 
frequently, highlighting the diversity of approaches within this category.

 

 

Fig. 2. Effects of commonly used mutagenic agents on microalgal cells and their DNA 

mechanisms.  

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Categorical distribution of published literature on the topic of random mutagenesis using 

physical, chemical methods, or a hybrid of both. 

Fig. 2 Effects of commonly used mutagenic agents on microalgal cells and their DNA mechanisms

Fig. 3 Categorical distribution of published literature on the topic of random mutagenesis using physical, chemical methods, or a 
hybrid of both.
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Physical methods

Physical mutagenesis constituted 49.54% of the research, with UV treatment being the predominant tech-
nique in 55.5% of these investigations. UV treatment proved to be an effective method for inducing muta-
tions in microalgae. Other physical mutagenic agents, such as ion beams and radiation, were employed in 
a smaller proportion of the studies.

Targeted genera/species

The publications encompassed a range of microalgal genera/species. The six most targeted genera/species 
were Chlorella, Nannochloropsis, Scenedesmus, Haematococcus, Chlamydomonas, and Tetraselmis (Fig. 
4). Chlorella accounted for the largest proportion, with 40.4% of all articles focusing on this genus. Chlo-
rella vulgaris alone represented 19.3% of the articles. Nannochloropsis, Scenedesmus, Haematococcus, 
and Chlamydomonas also received significant attention in the research, while Tetraselmis and Phaeodac-
tylum were the subjects of a smaller number of studies. Desmodesmus had the least representation among 
the targeted genera/species.

Objectives of the studies

The majority of studies (57 papers) aimed to increase lipid content, indicating the significance of enhancing 

 

Fig. 4. A graphical depiction of the various microalgal strains employed in the field of random 

mutagenesis research. 

  

Fig. 4 A graphical depiction of the various microalgal strains employed in the field of random mutagenesis research
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lipid metabolism in microalgae. Thirteen papers focused on improving carotenoid productivity, while nine 
articles aimed to enhance biomass production. Additionally, researchers focused on developing microalgal 
strains capable of bioremediation, aiming to remove harmful substances such as heavy metals or gases from 
the environment. Overall, the published studies reflect a diverse range of objectives, highlighting the broad 
applications and potential benefits of random mutagenesis in microalgae research.

Chemical mutagenesis in microalgae: A versatile approach for inducing mutations

Advantages and simplicity of chemical mutagenesis 

Chemical mutagenesis is a popular technique for inducing mutations in microalgae due to its relative ease 
and affordability compared to other methods (Hlavova et al. 2015). Compared to physical mutagenesis or 
genetic engineering approaches, chemical mutagenesis offers the advantage of being a more straightfor-
ward process (Bleisch et al. 2022). It allows for the creation of various alterations in the DNA sequence, 
including base pair substitutions, deletions, and other forms of DNA damage, leading to a diverse range of 
mutants for evaluation and application (Cheng et al. 1992).

Alkylating agents and mutation induction

The selection of the specific chemical mutagen and the desired level of mutation induction determines the 
appropriate treatment concentration and duration. After the treatment, the microalgae are typically culti-
vated in selective media to promote the growth and persistence of mutants while wild-type cells degrade 
(Lopez-Rodas et al. 2001). Alkylating agents, such as ethyl methane sulphonate (EMS), methyl methane 
sulphonate (MMS), diethyl sulphate (DES), and N-methyl-N-nitro-N-nitrosoguanidine (NTG), are com-
monly used to increase the lipid output of oleaginous microalgae (Elisabeth et al. 2021). Among all chemi-
cal and physical agents, alkylating agents are frequently employed (Fig. 5) (Patel et al. 2016). These agents 
interact with DNA, causing base pairing failures, purine deamination, transitions, and frameshift mutations 
(Elisabeth et al. 2021). DNA replication can be affected when the DNA polymerase misreads nucleotides on 
the chemically modified template strand, resulting in nucleotide substitutions, insertions, and deletions (Ya-
mamoto et al. 2017). Different alkylating compounds, such as N-methyl-nitrosourea (NMU) and N-meth-

 

Fig. 5. Prevalence of different mutagenesis agents employed in microalgal studies, as reported by 

researchers. 

  

Fig. 5 Prevalence of different mutagenesis agents employed in microalgal studies, as reported by researchers
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yl-N’-nitro-N-nitrosoguanidine (MNNG), can induce a wide range of mutations by efficiently methylating 
O- and N-atoms (Chaturvedi et al. 2004; Krasovec et al. 2018)

While chemical mutagenesis offers several advantages, it is essential to carefully consider the potential 
risks and benefits. Toxic or unstable mutants may arise from this process, requiring thorough evaluation. 
Further research is necessary to comprehensively understand the mechanisms and outcomes of chemical 
mutagenesis in microalgae and develop safe and efficient procedures for inducing and utilizing mutant 
strains for various applications. Long-term applications, such as biofuel production, should also consider 
the stability and reliability of the generated mutants.

Physical mutagenesis

In contrast to the previously discussed approaches, physical mutagenesis involves subjecting microalgae to 
physical elements, such as UV light or ionizing radiation, to induce DNA damage and mutations (Trovão 
et al. 2022). This technique is straightforward, affordable, and offers unique advantages in the generation 
of genetic variation.

UV radiation-mediated mutagenesis

UV radiation is a commonly used physical mutagen due to its ease of implementation, simplicity, and 
cost-effectiveness (Liu et al. 2015c). Microalgae are exposed to UV lamps, typically found in flow cham-
bers, to induce point mutations, deletions, and substitutions (Altenburg 1934). UV radiation is absorbed by 
DNA molecules, leading to the formation of pyrimidine dimers that disrupt the DNA double-helix struc-
ture and inhibit normal base pairing (Rastogi et al. 2010). The wavelength of UV radiation determines 
the type and extent of mutations induced. UV radiation is divided into three categories as shown in (Fig. 
6) UV-A, UV-B, and UV-C the commonly used area is UV-C. Although UV exposure causes a variety of 
DNA modifications, phototrophic cells may be resistant to some physical mutagens because of their pho-
ton-capturing and quenching capabilities. Furthermore, the creation of pyrimidine dimers within the DNA 
is linked to 80% of mutation events brought on by UV radiation, particularly UV-C radiation. As DNA ab-
sorption reaches its peak at this spectral range, radiation at 260 nm promotes the most effective production 
of cyclobutene pyrimidine dimers. As a result, UV-C irradiation has been suggested for methods involving 
random mutation, such as those using microalgae (Yi et al. 2015).

Ionizing radiation-mediated mutagenesis

Ionizing radiation, such as gamma rays, X-rays, or ion beams, can also be used as physical mutagens 
(Sikder et al. 2013). Compared to UV radiation, ionizing radiation has a higher energy density, resulting in 

 

Fig. 6. Spectrum of ultraviolet radiation used for physical mutagenesis. 

  

Fig. 6 Spectrum of ultraviolet radiation used for physical mutagenesis



Int Aquat Res (2023) 15:85–102 93

severe genetic damage (Min et al. 2003). It causes ionization of molecules, alteration of DNA bases, phos-
phodiester bond breakage, and chromosomal aberrations, including deletions, translocations, and fragmen-
tation (Klug and Cummings 2003). Research on the effects of gamma radiation on microalgae has revealed 
modifications in energy transfer and photosynthetic activity due to the formation of reactive oxygen species 
(Gomes et al. 2017).

Laser mutagenesis

Visible and near-infrared laser light has been used as a physical mutagen in microalgae (Ouf et al. 2012). 
Microalgae show higher resistance to radiation in the visible light spectrum due to natural heat dissipation 
and fluorescence quenching. Laser mutagenesis, using lasers such as semiconductor lasers (632.8 nm), 
(He-Ne) lasers (808 nm), or Nd: YAG lasers (1064 nm), allows for brief exposure to microalgae, resulting 
in mutagenesis effects, including increased lipid production (Xing et al. 2021).

Atmospheric and Room-Temperature Plasma (ARTP) mutagenesis

ARTP mutagenesis employs room-temperature plasma to produce mutations and mutagenic chemical spe-
cies, making it a potential physicochemical technique (Fridman et al. 2007). This method shows promise 
due to its low gas temperatures, quick performance, high diversity of mutants, and environmentally friendly 
operation (Gaunt et al. 2006). However, comprehensive datasets on cell survival rates and mutation rates 
are currently limited (Zhang et al. 2014). 

Physical mutagenesis techniques offer unique advantages in generating genetic variation in microalgae. 
However, understanding the mechanisms and effects of physical mutagenesis on microalgae, as well as 
evaluating the stability and applicability of the generated mutants, requires further research. Additionally, 
exploring advanced techniques like ARTP mutagenesis and optimizing laser mutagenesis methods hold the 
potential for enhancing the efficiency and outcomes of physical mutagenesis in microalgae.

Effect of random mutagenesis on biomolecule content

Chemical mutagenesis and lipid content in microalgae

The lipid content of microalgae has been a primary focus for researchers due to its significant importance 
in various industrial applications, making it a pivotal area of study within the field of biotechnology. One 
prominent application of microalgae lipids lies in the production of biofuels, particularly biodiesel, as mi-
croalgae have the capability to generate substantial amounts of lipids that can be converted into renewable 
fuel sources (Khoo et al. 2023). Microalgae offer several advantages over conventional sources such as 
corn and soybeans for biofuel production. They can be cultivated on non-arable land with minimal resource 
inputs, thereby presenting a sustainable and promising biofuel source (Gouveia and Oliveira 2009). Addi-
tionally, microalgae lipids find extensive use in the production of cosmetics and personal care products. The 
incorporation of lipids derived from microalgae into various cosmetic formulations, including moisturizers, 
sunscreens, and anti-aging creams, has gained significant traction. These lipids contribute to the function-
ality and performance of such products (Wijffels et al. 2010). Moreover, microalgae lipids play a crucial 
role in the production of animal feed. They serve as a valuable source of energy and essential fatty acids for 
fish and other aquaculture species. The inclusion of microalgae lipids in animal feed formulations enhances 
nutritional value and supports optimal growth and development (Patil et al. 2005).

Chemical mutagenesis represents the initial approach employed to enhance the lipid content of microal-
gae. In this study, a comprehensive literature review was conducted, and data were gathered to determine 
the most effective method for increasing lipid content using chemical mutagenesis across diverse microal-
gae species. The findings are summarized in (Table 1). The analysis revealed that the highest lipid content 
achieved through chemical mutagenesis was reported by Beacham et al. (2015) in Nannochloropsis salina. 
The researchers utilized EMS and achieved a 1.95 fold increase compared to the wild strain. Similarly, Mi-
chela et al. (2020) employed chemical mutagenesis in Nannochloropsis gaditana and achieved a 1.8 fold 
increase relative to the control strain. Notably, Mehtani et al. (2017) and Lee et al. (2014) also found that 
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chemical mutagenesis increased the amount of lipids in Chlorella minutissima and Chlamydomonas rein-
hardtii by 1.56 and 1.5 fold, respectively, compared to the control. Furthermore, Doan and Obbard (2012) 
achieved a 1.49 fold enhancement in lipid content in Nannochloropsis sp. In conclusion, chemical muta-
genesis utilizing EMS emerges as the most effective method for augmenting lipid content in microalgae, 
particularly within the Nannochloropsis genus. However, further investigations are warranted to refine this 
approach and explore the potential commercial applications of microalgae exhibiting high lipid content.

Physical mutagenesis and lipid content in microalgae

Physical mutagenesis, in addition to chemical mutagenesis, represents another viable method for enhanc-
ing the lipid content of microalgae. In this analysis, the existing literature was examined to identify the 
highest lipid content achieved through physical mutagenesis. A comprehensive review of the literature was 
conducted, and relevant data on the highest lipid content achieved using physical mutagenesis in various 
microalgae species were collected in (Table 2). Whereas Zhang et al. (2017) reported that Chlorella pa-
cifica had the highest lipid content using physical mutagenesis, according to the analysis of the data. The 
researchers employed laser radiation and achieved a remarkable 2.66 fold increase compared to the wild 

Table 1. Effects of chemical mutagenesis on microalgal strains concerning the improvement of lipid content.  
Mutagenic agent Species Method Improvement by fold compared to control strain Reference 
EMS Auxenochlorella sp. 0.25M for 13 min 1.12 (Polat and Altınbaş 2022) 
EMS Chlamydomonas reinhardtii 300 mM for 80 min 1.12 (Xie et al. 2014) 
EMS Chlamydomonas reinhardtii 20 - 40 µL/mL for 120 min 1.5 (Lee et al. 2014) 
EMS Chlorella minutissima 0.45, 0.8, 1.4, 1.7, 2.0 and 2.4 M for 30 min 1.56 (Mehtani et al. 2017) 
EMS Chlorella sp. 50, 100, and 200 mM for 30 or 60 min 1.24 (Noochanong et al. 2018) 
5’Fuorodeoxyuridine Chlorella vulgaris 0.25 mM for 1 week 1.23 (Anthony et al. 2022) 
EMS Chlorella vulgaris 100 mM for 30 min 1.44 (Nayak et al. 2022) 
EMS Chlorella sp. 100 mM for 60 min 1.26 (Ong et al. 2010) 
EMS Desmodesmus sp. 600-800 mM for 30-60 min 1.29 (Zhang et al. 2016) 
EMS Nannochloropsis gaditana 0.75%, 1.5%, 2% and 2.5% for 120 min 1.8 (Michela et al. 2020) 
EMS Nannochloropsis oceanica 1 mol/L for 60 min 1.29 (Wang et al. 2016b) 
MNU Nannochloropsis oculate 5 mM for 60-90 min 1.22 (Chaturvedi et al. 2004) 
EMS Nannochloropsis oculate 100 mM for 60 min 1.22 (Chaturvedi and Fujita 2006) 
EMS Nannochloropsis salina 0.24 mol/L for 30 min 1.95 (Beacham et al. 2015) 
EMS Nannochloropsis sp. 0.1 M and 0.5 M 1.36 (Kawaroe et al. 2015) 
EMS Nannochloropsis sp. 0.1, 0.5, 1, and 1.2 M for 60 min 1.49 (Doan and Obbard 2012) 
MNNG Parietochloris incisa 100 μg/ml for 60 min 1.05 (Iskandarov et al. 2011) 
NTG Schizochytrium sp. 1, 1.5, and 2 mg/ml for 20, 30, and 40 min 1.34 (Lian et al. 2010) 
EMS Tetraselmis sp. 25, 50, 75, and 100µmol mL-1 for 30, 60, 90, and 120 min 1.48 (Dhanalakshmi et al. 2018) 
EMS Tetraselmis sp. 25, 50, 75, and 100µmol mL-1 for 30, 60, 90, and 120 min 1.25 (Dinesh Kumar et al. 2018) 

 

  Table 2. Effects of physical mutagenesis on microalgal strains concerning the improvement of lipid content. 
Mutagenic agent Species Method Improvement by fold compared to control strain Reference 
Heavy ion beam Aurantiochytrium sp. 137Se- γ-ray irradiation 1.13 (Cheng et al. 2016) 
Gamma-ray Auxenochlorella protothecoides 12C6+ ion beam (80 MeV/u), irradiated to 100 Gy with a rate of 40 Gy/min 1.15 (Shao et al. 2022) 
UV Brotryococcus braunii UV-Clamp (254 nm, 15W GE lightning). UV-C exposed for 0-30 min 1.62 (Thurakit et al. 2018) 
Heavy ion beam Chlamydomonas sp. JSC4 Irradiated with 50 or 100 Gy of the carbon ion beams 12C5+, 220 MeV 1.89 (Kato et al. 2017) 
Laser radiation Chlorella pacifica Nd: YAG laser 1064 nm, 40 mW, for 2 min 2.66 (Zhang et al. 2017) 
Laser radiation Chlorella pyrenoidesa He–Ne laser 808 nm, 6 W, for 4 min 2.2 (Xing et al. 2021) 

Low energy Chlorella pyrenoidosa 
Three ion source gases (N2, Ar, and C2H2), energy 10 KeV, current of 20 mA. 
pressure 10−2 Pa, dose implantation 0.3 × 1015 to 3.3 × 1015 ions cm−2 s−1 

1.3 (Tu et al. 2016) 

ARTP Chlorella pyrenoidosa (P = 120 W, G = 10 SLM, D = 2 mm) 1.12 (Cao et al. 2017) 
UV Chlorella sp. 354 nm 1.96 (Rachmayati et al. 2020) 
Gamma-ray Chlorella sp. Co60 γ rays, 800 Gy for 50 min 1.36 (Senthamilselvi and Kalaiselvi 2022) 
UV Chlorella vulgaris 18W UV light, distance 15 cm for 13 min 2.4 (Xiaodong et al. 2011) 
UV Chlorella vulgaris 254 nm for 0.5-10 min 1.64 (Sarayloo et al. 2018) 
laser radiation Chlorella vulgaris Nd:YAG laser 1064 nm, 40 mW for 8 min 1.66 (Xing et al. 2021) 
UV Chlorella vulgaris UV-2 / UV-A light for 60 s, distance 15 cm 1.26 (Anthony et al. 2022) 
UV Chlorella vulgaris UV-C, for 1–10 min, distance 40 cm 1.3 (Carino and Vital 2022) 

UV 
Chlorella vulgaris 
Desmodesmus armatus 

354 nm 1.33 (Smalley et al. 2020) 

UV Chlorella sp. FC2 IITG 254 nm UV-C, distance 20 cm, time 60 min 1.2 (Muthuraj et al. 2019) 
Heavy ion beam Desmodesmus sp. 12C6+ ion beam, 90 Gy 1.2 (Hu et al. 2013) 
ARTP Desmodesmus sp. (G = 5 SLM, D = 2 mm, U = 120 V, I = 1 A) 1.64 (Li et al. 2021) 
ARTP Desmodesmus sp. (G = 5 SLM, D = 2 mm, U = 120 V, I = 1 A) 2.32 (Sun et al. 2020) 
UV Isochrysis affinis galbana 254 nm, for 3–32 min 1.56 (Bougaran et al. 2012) 
UV mix of microalgae 254 nm, 15 W, for 30 -180 s, distance 5 cm 1.96 (Ardelean et al. 2018) 
Heavy ion beam Nannochloropsis oceania 12C6+ ion beam 31 keVµm−1, 160 Gy 1.39 (Ma et al. 2013) 
UV Nannochloropsis oceania 354 nm for 120 min 1.16 (Moha-León et al. 2019) 
UV Nannochloropsis oculata UV.A 1.16 (Srinivas and Ochs 2012) 

ARTP Parachlorella kessleri 
Power 100 W, the distance between slide and plasma emitter jet 2 mm, helium 
gas flow rate of 10 L/min, and exposure time from 10 to 60 s 

1.75 (Elshobary et al. 2022) 

UV Pavlova lutheri 254 nm, for 40 min 1.14 (Meireles et al. 2003) 
UV Phaeodactylum tricornutum 250 nm 1.34 (Alonso et al. 1996) 
UV Scenedesmus obliquus 254 nm 2.39 (de Jaeger et al. 2014) 

Gamma-ray Scenedesmus sp. 
10 doses of irradiation 50–7000 kGy, 
Co60 gamma ray irradiator at room temperature 

1.5 (Liu et al. 2015a) 

UV Scenedesmus sp. 253.7 nm, distance 15 cm, time from 0 to 40 min. 1.5 
(Sivaramakrishnan and Incharoensakdi 
2017) 

Table 1 Effects of chemical mutagenesis on microalgal strains concerning the improvement of lipid content

Table 2 Effects of physical mutagenesis on microalgal strains concerning the improvement of lipid content

UV Scenedesmus sp. 
20 W UV, λ = 254 nm, distance 35 cm, time intervals 30, 60, 100, 120, 180, 
240, and 270 s 

1.21 (Zhang et al. 2018a) 

Heavy ion beam Scenedesmus sp. 
Pressure 10-2 Pa, energy 10 keV, beam current 20 mA, The dose of 
implantation ranged from 0.2x1015 to 3.4x1015 ions cm−2 s−1 

1.18 (Qu et al. 2020) 

UV Tetraselmis suecica UV-C 1.23 (Lim et al. 2015) 
UV Tetraselmis suecica 254 nm, 8 W, time durations of 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 min 1.4 (Lo et al. 2022) 
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strain. Similarly, Xiaodong et al. (2011) utilized physical mutagenesis in Chlorella vulgaris, employing 
UV radiation to achieve a substantial 2.4 fold increase in lipid content. Furthermore, other studies reported 
successful improvements in lipid content using physical mutagenesis. For instance, de Jaeger et al. (2014) 
employed UV radiation in Scenedesmus obliquus, resulting in a 2.39 fold increase compared to the control 
strain. Similarly, Sun et al. (2020) utilized ARTP treatment in Desmodesmus, achieving a significant 2.32 
fold increase. Moreover, Xing et al. (2021)  employed laser radiation to enhance lipid content in Chlorella 
pyrenoidosa, resulting in a 2.2 fold increase. Collectively, these findings indicate that physical mutagenesis 
using laser radiation and UV radiation is highly effective in improving lipid content in microalgae, partic-
ularly within the Chlorella genus. Additionally, ARTP has demonstrated superior results compared to other 
methods, suggesting its potential as a valuable approach. With further experimentation and refinement, 
ARTP could potentially yield even more significant improvements.

Enhancing carotenoid production in microalgae through mutation

Carotenoids, alongside lipids, hold substantial market value in the food and nutrition industry (Priyadar-
shani and Rath 2012). With diverse industrial applications, carotenoids have emerged as a significant re-
search area within biotechnology (Dhanda and Shankar 2022). Additionally, carotenoids serve as a source 
of essential vitamin A, which is crucial for human health (Rao and Rao 2007). Certain microalgae species, 
such as Dunaliella salina and Haematococcus pluvialis, are renowned for their high carotenoid production, 
particularly beta-carotene, a precursor to vitamin A (Rammuni et al. 2019). These microalgae are widely 
utilized as a source of beta-carotene for food supplements and as natural food colorants (Gupta et al. 2007). 
Moreover, carotenoids derived from microalgae exhibit antioxidant properties, which can aid in safeguard-
ing against cellular damage inflicted by free radicals (Maadane et al. 2015).

Thirteen articles centred around carotenoids as their primary focus. This discussion will highlight the 
top five articles reporting significant improvements in carotenoid content (Table 3). Cordero et al. (2011) 
employed MNNG treatment to enhance carotenoid production in Chlorella sorokiniana, resulting in a two-
fold increase compared to the wild strain. Wang et al. (2016a) employed UV radiation to improve carot-
enoid content in Haematococcus pluvialis, yielding a 1.7 fold increase compared to the control strain. 
Similarly, Jin et al. (2003) utilized EMS treatment in Dunaliella salina and achieved a 1.25 fold increase 
compared to the control strain. Fan et al. (2021) employed a heavy ion beam, while Yi et al. (2018) em-
ployed EMS treatment, resulting in 1.25 fold and 1.2 fold increases, respectively, in carotenoid content in 
Phaeodactylum tricornutum. These studies collectively demonstrate the efficacy of chemical mutagenesis 
in enhancing carotenoid production in microalgae. The most effective methods led to significant improve-
ments in carotenoid content compared to the control. MNNG treatment exhibited the highest fold increase, 
followed by UV radiation and EMS treatment. It is important to note that different microalgae species may 
respond differently to chemical mutagenesis.

Improving microalgae biomass through different mutagenesis techniques

Microalgae biomass, encompassing cells, cell debris, and extracellular substances, holds significant indus-
trial interest and serves as a crucial subject of study in biotechnology (Fathy et al. 2021). The production 
of biofuels stands out as a prominent application of microalgae biomass, with large-scale cultivation capa-

Table 3. Enhancement of carotenoid content in microalgae using different chemical and physical mutagenesis techniques 
Mutagenic agent Method Species Method The improvement compared to the control strain Reference 
EMS Chemical Chlamydomonas reinhardtii NG* Faster growth and pigment change (Loppes 1969) 
MNNG Chemical Chlorella sorokiniana 0.1 mg/mL, for 60 min 2 fold (Cordero et al. 2011) 
MNNG Chemical Chlorella sorokiniana 0.1 mg/mL, for 60 min Lutein productivity and content (Chen et al. 2017) 
EMS Chemical Chlorella vulgaris 2.2% (w/v), for 120 min Carotenoid content and oxidative stress tolerance (Guardini et al. 2021) 
MNNG Chemical Chlorella zofingiensis (heterotrophic) 0.5-10 mg/mL, for 60 min Zeaxanthin, β-carotene, and lutein accumulation (Huang et al. 2018) 
EMS Chemical Dunaliella salina 200 mM, for 120 min 1.25 fold (Jin et al. 2003) 
EMS Chemical Dunaliella tertiolecta 200 mM, for 120 min 1.015 fold (Kim et al. 2017) 
EMS Chemical Haematococcus pluvialis 100 mM 1.025 fold (Chen et al. 2003) 
NTG Chemical Haematococcus pluvialis 0.1 mM, for 60 min 1.038 fold (Sandesh Kamath et al. 2008) 
UV Physical Haematococcus pluvialis 1.5% to 2.0% (V/V), for 60 min 1.7 fold (Wang et al. 2016a) 
Gamma-ray Physical Nannochloropsis oceanica 100 to 1000 Gy using 60Co irradiator Violaxanthin productivity (Park et al. 2021) 
EMS Chemical Phaeodactylum tricornutum 0.1- 0.2 M 1.2 fold (Yi et al. 2018) 
Heavy ion beam Physical Phaeodactylum tricornutum Carbon ions, 200 Gy ion beam 1.25 fold (Fan et al. 2021) 

 

* NG = Not Given 
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* NG = Not Given
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ble of yielding biohydrogen and bioethanol (John et al. 2011). Moreover, microalgae biomass is a valuable 
source of protein, vitamins, and minerals, finding utility in animal feed manufacturing (Saadaoui et al. 2021). 
Additionally, it finds application in a range of cosmetic and personal care products, including moisturizers, 
sunscreens, and anti-aging lotions (Ariede et al. 2017). Furthermore, microalgae biomass serves as a precur-
sor for various chemicals and polymers, such as bio-based plastics, lubricants, and surfactants (Lambert and 
Wagner 2017). Utilizing microalgae biomass in the production of industrial chemicals and polymers offers the 
potential for reduced dependence on fossil fuels and decreased greenhouse gas emissions.

This section presents a review of the utilization of mutagenesis techniques to enhance microalgae bio-
mass, as depicted in (Table 4). Several studies have reported successful increases in biomass, particularly 
in Chlorella, through the application of chemical and physical mutagenesis. For instance, Kuo et al. (2017) 
employed NTG treatment, resulting in a remarkable 5.83 fold increase in biomass compared to the control 
strain of Chlorella sp. Similarly, Cheng et al. (2013) utilized gamma rays to achieve a 2.88 fold increase in 
biomass for Chlorella vulgaris and a 1.93 fold increase for Chlorella pyrenoidosa. Furthermore, Sachdeva 
et al. (2016) employed EMS treatment, leading to a 1.97 fold increase in biomass for Chlorella pyrenoido-
sa. Finally, Shin et al. (2016) utilized EMS treatment to achieve a 1.44 fold increase in biomass for Chlo-
rella vulgaris. The reviewed literature suggests that chemical mutagens, particularly NTG, exhibit greater 
efficacy in enhancing biomass in Chlorella compared to physical mutagens. Therefore, when targeting 
biomass enhancement as the primary objective, the utilization of Chlorella sp. in conjunction with chemical 
mutagenesis holds promise for yielding favorable results.

Hybrid approaches in random mutagenesis

Combined mutagenesis approaches have garnered significant interest due to their potential to achieve higher 
success rates compared to individual methods (Wang et al. 2016a). A recent review of the literature, presented 
in (Table 5), demonstrates the application of combined mutagenesis approaches and their impact on various 
aspects of microalgae. Nečas (1968) employed the combination of EMS and UV methods on different mi-
croalgae strains, observing notable improvements in cell growth. However, Huesemann et al. (2009) reported 
a negative effect on chlorophyll content when applying the same combined method to Cyclotella sp. On the 
other hand, Sarayloo et al. (2017) evaluated the effect of a hybrid mutagenesis approach on the lipid content 
of Chlorella vulgaris, resulting in a significant 1.67 fold improvement. Furthermore, Sarayloo et al. (2018) 
also reported a 1.67 fold increase in lipid content in Chlorella vulgaris using the same hybrid method. These 
findings indicate that the effectiveness of the hybrid mutagenesis approach is yet to be fully realized. Further 
investigations involving diverse species and a range of doses will shed light on whether this method exhibits 
antagonistic or synergistic effects.

Conclusions and future perspectives

Microalgal strains hold significant potential as sources of renewable energy, food, and valuable compounds. 

Table 4. Improvement of microalgal biomass through the utilization of various chemical and physical mutagenesis agents. 
Mutagenic agent Method Species Method Improvement by fold compared to control strain Reference 
Gamma-ray Physical Chlorella pyrenoidosa 100, 300, 500, 700, and 900 Gy of 60Co γ rays, the dose rate of 15 Gy min−1 1.93 (Cheng et al. 2013) 
EMS Chemical Chlorella pyrenoidosa 1.75 and 2% 1.97 (Sachdeva et al. 2016) 
UV Physical Chlorella sorokiniana 254 nm, for 60 -120 min 1.27 (Cazzaniga et al. 2014) 
EMS Chemical Chlorella sorokiniana 0.5% (w/v), for 4 h 1.11 (Wu et al. 2019) 
Gamma-ray Physical Chlorella vulgaris 100, 300, 500, 700, and 900 Gy of 60Co γ rays, the dose rate of 15 Gy min−1 2.28 (Cheng et al. 2013) 
EMS Chemical Chlorella vulgaris 0.1, 0.19, 0.24, and 0.28 M, for 120 min 1.44 (Shin et al. 2016) 
NTG Chemical Chlorella sp. 5 μg/mL, for 60 min 5.83 (Kuo et al. 2017) 
ARTP Physical Crypthecodinium cohnii He RF power 150 W, for 100 s 1.18 (Liu et al. 2015b) 
EMS Chemical Nannochloropsis gaditana 70 mM, for 60 min 1.27 (Perin et al. 2015) 

 

  Table 5. Effects of utilizing hybrid mutagenic agents on microalgae cells: EMS and UV radiation. 
Target Species Method Improvement by fold compared to control strain Reference 
Lipid content Chlorella vulgaris UV 254 nm, for 0.5-10 min / EMS 25 mM for 60 min 1.43 (Sarayloo et al. 2017) 
Lipid content Chlorella vulgaris UV 254 nm, for 0.5-10 min / EMS 25 mM for 60 min 1.67 (Sarayloo et al. 2018) 
Chlorophyll Cyclotella sp. 0.2 M for 120 min / 15 W UV for 15 - 20 s Reduced chlorophyll (Huesemann et al. 2009) 

Growth 
Scenedesmus quadricaua, Chlorella vulgaris, 
Chlamydomonas reinhardi 

NG* Better growth on minimal media as compared to wild type (Nečas 1968) 

* NG = Not Given 
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However, the challenges faced in industrial microalgae production hinder their widespread utilization. 
Strain improvement is crucial to overcome these challenges and develop more productive and resilient 
strains. The choice of strain improvement approach should be based on the specific improvement targets 
and intended applications. Random mutagenesis is a well-established technique for generating genetic di-
versity in microorganisms. It involves subjecting microorganisms to physical or chemical agents that intro-
duce random mutations into the genome. This can lead to the emergence of novel traits, such as increased 
productivity or environmental stress resistance. Although there is a wide range of physical and chemical 
mutagens available for random mutagenesis, not all of them have been extensively studied in microalgae. 
In this review, we discussed the use of random mutagenesis as a cost-effective and time-efficient strategy 
to develop more robust strains for the microalgae industry. We found that physical mutagens have demon-
strated the ability to enhance the cellular lipid content of microalgae, while chemical mutagens like EMS 
and MNNG have been effective in increasing pigment production and biomass. Furthermore, we observed 
that the recent trend of utilizing combined mutagenesis approaches to increase the mutation rate of cells has 
shown limited effectiveness. Further research is necessary to explore the advantages and disadvantages of 
different mutagenesis strategies to optimize their outcomes. Whereas the study of microalgal genomics and 
metabolomics plays a crucial role in understanding the regulation of pathways involved in the biosynthesis 
and breakdown of target compounds. This knowledge can aid in the identification, selection, and isolation 
of key factors, such as gene products and environmental conditions, for the improvement of specific mi-
croalgal strains with desired phenotypes. Genomic and metabolomic data can also be utilized to predict the 
effects of mutations on phenotypes, assisting in the selection of the most promising mutants. Despite the 
power of random mutagenesis as a strain improvement tool, several challenges still need to be addressed. 
Industries like food and medicine are currently limiting the use of genetically modified organisms and mo-
lecular toolboxes for microalgae. Thus, approaches that facilitate the natural optimization of microalgal cell 
factories are being explored. Additionally, the development of high-throughput screening technologies and 
scalable phototrophic cultivation systems is needed.
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