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Abstract

Responses of stinging catfish (Heteropneustes fossilis) to pollution were studied in
three freshwater rivers, namely Buriganga, Turag, and Shitalakkhya (Dhaka,
Bangladesh), which are potentially affected by anthropogenic pollution originating
from industrial and sewage dumping. Partial parameters about water quality
(temperature, dissolved oxygen, and pH) and seasonal plankton fluctuation were
recorded at wet and dry seasons. Histopathology and acetylcholinesterase (AChE)
activity were used as biomarkers to assess water toxic effects in 7-and 10-day
exposures of H. fossilis to three rivers waters, respectively. The lowest level of
dissolved oxygen was recorded as 0.7 ± 0.1 mg/l, and the lowest count of plankton
genera was 21 at lean period. Furthermore, the 7-day exposure of fish to polluted
water abruptly altered the normal structure of various organs. Major structural
damages were partial and total epidermal loss, dermis and muscle separation,
melanin pigment and vacuole in skin muscle; missing of lamellae, clubbing, fungal
granuloma, hyperplasia and hemorrhage in gills; hyperplasia, hemorrhage, pyknosis,
vacuole, necrosis, nuclear alteration, fatty degeneration, lipid droplets in liver;
degenerating glomerular and tubule, hemorrhage, pyknosis and vacuole in kidneys;
and scattered spermatozoa and prominent interstitial space in the testis. After
subsequent exposure to polluted water, a significant (P < 0.05) inhibition of AChE
activity in the fish brain was observed with the following order of potency: 102.00 ±
5.00 nmol/min/mg protein (Turag)≥ 104.00 ± 5.00 nmol/min/mg protein (Buriganga) >
130.67 ± 3.51 nmol/min/mg protein (Shitalakkhya). This study confirmed the utility of
biomarkers in biomonitoring studies and reflected the potential hazards of pollution to
aquatic biota.
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Background
River pollution is one of the recently focused environmental issues where the most at-

tention is drawn to the rivers and canal systems surrounding Dhaka, Bangladesh. Rapid

and unplanned urbanization and industrialization centering this area are increasing at

an alarming rate. Due to this situation, the major three rivers, Buriganga, Turag, and

Shitalakkhya, surrounding Dhaka have been steadily experiencing complicated prob-

lems of pollution and encroachment that have almost suffocated these valuable lifelines

of the city. The presence of pollutants in the environment is partially due to natural

processes but mainly as a result of industrial waste. The polluting industries surround-

ing the capital are mainly concentrated at Hazaribag and Lalbag (Old Dhaka), Tongi

(Gazipur), and Demra (Narayangang) that dispose their huge untreated effluents dir-

ectly into these three rivers. These rivers specially the Buriganga are also loaded by

sewage pollution. However, high concentration of suspended and dissolved solids has

also been reported; they previously occurred at low concentration and are now found

in high concentrations (Zakir et al. 2006; Mohiuddin et al. 2011).

Occurrence of potential toxicants in aquatic ecosystem causes a reduction in the

quality of the aquatic environment that results in impaired level of dissolved oxygen

(DO), pH, temperature, biological oxygen demand, and chemical oxygen demand

(Roberts 2001). Adverse water quality, moreover, makes the aquatic habitat biologically

dead. Availability of a plankton community is an indicator of water quality. Ferdous

and Muktadir (2009) described the high potentialities of zooplankton as a bioindicator.

However, evaluations on reduced bioavailability of plankton that resulted from pollu-

tion have been made earlier (Begum and Khanam 2009; Shah et al. 2008; Begum 2008;

Solomon et al. 2009; Sharma et al. 2010).

Though chemical monitoring of water and sediment is a common and reliable meas-

ure to describe the degree of contamination, it is not the case for the overall assessment

for evaluating the effects of pollution on the environment as toxic or biological effects

on organisms cannot be obtained by this method. Recently, different types of

biomarkers have been studied and evaluated for their acceptability to detect the bio-

logical effects as a biomonitoring tool (Amiard et al. 2006; Magni et al. 2006; Nigro

et al. 2006).

Histopathological assessment is a sensitive biomonitoring tool in toxicant impact as-

sessment to indicate the effect of toxicants on fish health in polluted aquatic ecosys-

tems. Histopathological assessment of fish tissue allows for early warning signs of

disease and detection of long-term injury in cells, tissues, or organs. Structural changes

in various tissues into the polluted ecosystem have also been acknowledged (Peuranen

et al. 2000; Marchand et al. 2009). Earlier histopathological assessments of fish exposed

to a variety of pollutants reveal the potency of this biomarker against pollution.

Acetylcholinesterase (AChE) is the main cholinesterasic form in all invertebrate and

vertebrate tissues such as the brain (Rodrigues et al. 2011), muscles, blood cells, and

liver (Valbonesi et al. 2011). This enzyme is found at neuromuscular junctions and cho-

linergic nervous system where its activity serves to terminate synaptic transmission. It

degrades (through its hydrolytic activity) the neurotransmitter acetylcholine, producing

choline and an acetate group in both vertebrates and invertebrates (Varo et al. 2008).

Cholinesterase inhibitors such as organophosphate and carbamate block the function

of AChE and thus provoke excess acetylcholine accumulation in the synaptic cleft that
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eventually causes neuromuscular paralysis, leading to death by asphyxiation (Nunes

et al. 2003; Purves et al. 2008; Xuereb et al. 2009). Recent studies have shown that

AChE is a very useful biomarker of pollution stress under a variety of environmental

factors and chemical mixtures in different geographical regions (Baršienė et al. 2006;

Kopecka et al. 2006; Schiedek et al. 2006).

In spite of having a lot of deleterious effects of pollution, a limited number of re-

search were conducted in Bangladesh to ascertain their effects on fish at cellular and

molecular level. To our knowledge, limited investigations have been made till now to

assess the neurotoxic effects (in terms of AChE inhibition) of river pollutants on fish,

thus indicating the need for due attention on this matter. Thus, the purpose of the

present study is to assess the cellular and neurotoxic effects of river pollution on

Heteropneustes fossilis through the determination of potency of two biomarkers against

pollution.
Methods
Study area

Buriganga (near Lalbag, Dhaka), Turag (near Tongi Bridge, Gazipur), and Shitalakkhya

(near Demra, Narayangang) are supposed to derive massive pollutant loadings from

sewage and industrial effluents directly as industries, textiles, pharmaceuticals, and tan-

neries have clustered here. During the rainy season, the water quality improves moder-

ately, but on the advent of the dry season, pollution concentration increases abruptly

because the water level of the rivers reduces a lot at this time, but the rate of pollutants

released into the rivers remains identical. Location of the three rivers and sampling

sites are shown in Figure 1.
Water quality parameter measurements

Some water quality parameters were measured from the three rivers at two different

seasons (early September 2010 and early March 2011). A mercury centigrade thermom-

eter was used to measure the water temperature; pH and DO were measured by a pH

meter (HI 98127, HANNA Instruments, Beijing, China) and a dissolved oxygen meter

(DO-5509, Tyner, Dongguan City Electronic Technology Co., Ltd., Guangzhou, China),

respectively. Each parameter was recorded at two different points with three replica-

tions in the same river.
Plankton collection and identification

With a view to record the seasonal plankton availability, samples were collected in early

September 2010 and early March 2011. Planktons were collected randomly from the

three rivers by plankton net towing. Collected samples were immediately preserved

with 5% buffered formalin in separate tagged plastic bottles. For species identification,

the bottle containing plankton samples was gently shaken to resuspend all materials,

was poured on water a petri dish, and was allowed to settle for a minute. Two drops of

water were placed on a glass slide and covered with a cover slip. The planktons were

then identified up to genus level under a compound microscope (OPTIKA B-350,

OPTIKA Microscopes, Ponteranica, Bergamo, Italy) according to APHA (1992), Bellinger

(1992), and Palmer (1980).



Figure 1 Location of the three rivers, Buriganga, Turag, and Shitalakkhya. Black star (★) indicates the
sampling sites (image was taken from Google map).
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Histopathological study

To assess the effects of polluted water exposure to fish, water samples were separately

collected from Buriganga, Turag, and Shitalakkhya rivers in six plastic containers (30 l)

and were carried out to the wet laboratory of the Faculty of Fisheries, Bangladesh Agri-

cultural University, Mymensingh. Experiments were conducted in nine aquaria of size

48 × 26 × 30 cm3. Water samples from the three rivers were kept in three different

aquaria, each having two replications, whereas one aquarium was kept as control. H.

fossilis with average size and weight of 12 ± 1.4 cm and 10.5 ± 1.2 g, respectively, were

collected from a local fish market in live condition. Forty-five fishes (five fishes in each

aquarium) were exposed to three river water samples for a period of 7 days with con-

tinuous aeration. After the 7-day exposure, two fishes were taken from each aquarium

and sacrificed. Gills, skin muscle, liver, kidney, and gonads were collected and
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preserved in 10% neutral-buffered formalin, while gonads were preserved in Bouin’s

fluid. The preserved samples were then dehydrated, cleaned and infiltrated in an auto-

matic tissue processor (ThermoFisher Scientific, Waltham, MA, USA), embedded in

melted paraffin wax, and sectioned (5 μm) with a microtome machine (Leica Junc

2035, Leica Microsystems Srl, Milan, Italy). Thereafter, the sections were stained with

hematoxylin and eosin (H and E) stains. After staining, the sections were mounted with

Canada balsam and kept overnight for the permanent slide. Photomicrography of the

stained samples was done using a photomicroscope (OPTIKA B-350). The extent of al-

teration was scored as severe (+++), moderate (++), mild (+), and not found (−). When

a pathology occurred in >50% cell or area in maximum investigated slides, it scored se-

vere (+++),followed by >25% for moderate (++), and <25% for mild (+).
AChE activity measurement

x`For the analysis of AChE activity, H. fossilis was exposed to river water in glass aquaria for

10 days. Fish exposed to pollutant-free water was kept as control. Following exposure, three

fishes were taken from each aquarium (n = 9) for each river. The whole brain was dissected

out by sacrificing the fish and was placed in ice-cold 0.1-M sodium phosphate buffer (pH

8.0). In this study, where brain sample was used similarly with teleost, AChE is maximally

distributed in the brain (Kopecka et al. 2004; Ferenczy et al. 1997). Tissues were then

weighted and homogenized using a glass-Teflon homogenizer in a homogenization buffer

(0.1-M sodium phosphate buffer, 0.1% Triton X-100, pH 8.0) to achieve the final concentra-

tion of 20 mg tissue/ml phosphate buffer. Tissue homogenate was centrifuged at 10,000 × g

for 15 min at 4°C, and the supernatant was removed. An aliquot of supernatant was then re-

moved and measured for protein according to the method of Lowry et al. (1951) using bo-

vine serum albumin in homogenization buffer as a standard.

AChE activity in the fish brain was measured according to the method of Ellman et al.

(1961), as optimized by Habig et al. (1988) and Sandahl and Jenkins (2002). Tissue hom-

ogenate (50 μl) was added to 900 μl of cold sodium phosphate buffer (0.1 M containing

0.1% Triton X-100, pH 8.0) and 50 μl of 5,5-dithiobis (2-nitrobenzoic acid) (6 mM), then

vortexed, and allowed to stand at room temperature for 10 min. Aliquots of 200 μl in trip-

licate were then placed into microtiter plate wells. The reaction was started with the

addition of 50 μl of acetylthiocholine iodide (15 mM) specific for fish (Jash et al. 1982).

Changes in absorbance were measured with a microplate reader (SpectraMax 340PC384,

Molecular Devices LLC, Sunnyvale, CA, USA) at 412 nm for 10 min at 12-s intervals.

AChE activity is expressed as nanomole per minute per milligram protein.
Statistical analysis

Data were analyzed using one way analysis of variance and expressed as mean ± SD. A

post hoc Waller Duncan multiple test range was performed which considered a 5%

significant level using SPSS ver. 11.5 computer software program.
Results and discussion
Water quality parameters

Water quality parameters of the three rivers in two different seasons are presented in

Table 1. The temperature in the wet season ranged from 22.5°C to 24.5°C where it



Table 1 List of water quality parameters of the three rivers at two different seasons

River Season Water quality parameters

Temperature (°C) DO (mg/l) pH

Buriganga Wet 24.0 ± 1.0 6.8 ± 0.1 7.2 ± 0.2

Dry 29.5 ± 1.0 1.5 ± 0.2 7.1 ± 0.1

Turag Wet 24.5 ± 2.0 5.1 ± 0.1 7.1 ± 0.1

Dry 31.5 ± 0.5 0.7 ± 0.1 6.9 ± 0.1

Shitalakkhya Wet 22.5 ± 1.0 7.2 ± 0.1 7.2 ± 0.1

Dry 29.0 ± 1.2 1.9 ± 0.2 7.1 ± 0.1

Data are presented as mean ± SD.
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increased to 29°C to 31.5°C in the dry season. Significant reduction in DO level was

observed in dry season where Turag River had the lowest DO level (0.7 mg/l). No wide

fluctuation in pH level was observed at two different seasons that ranged from 6.9 to

7.2.

Variation in water quality parameters is mainly due to seasonal environmental factors.

Increased temperature in the dry season affects the DO level as they are inversely cor-

related. In the study, very low DO levels (0.7 to 1.9 mg/l) were recorded in the dry sea-

son where >5 mg/l is recommended for biological organisms. This anoxic condition

especially in Turag reflects the breakdown of untreated organic waste principally re-

ceived from domestic sewage and chemical residues from various industries surround-

ing Dhaka (The World Bank 2006). A similar phenomenon was previously reported

from these rivers (Begum 2008; Begum and Khanam 2009; The World Bank 2006; Saha

et al. 2009).
Plankton composition

The plankton communities of the three rivers were identified at rainy and dry seasons.

A total of 33, 26, and 35 genera were identified from Buriganga, Turag, and Shitalakkhya

rivers, respectively in the rainy season, whereas, in the dry season, a lesser number of gen-

era were recorded:21, 19, and 26, from Buriganga, Turag, and Shitalakkhya rivers, respect-

ively (Table 2). Among the recorded phytoplankton groups, Bacillariophyceae were found

in both seasons in the respective rivers, and Chlorophyceae were recorded more only in

the wet season. However, among the recorded zooplankton groups, Cladocera occurred

more frequently in the wet season than in the dry season. Frequent abundance of Cope-

poda represented by two genera was observed from the three rivers in both seasons.

Rotifera were recorded low, but the lowest count was made in the dry season; no genera

were even found in the dry season from Turag River.

Seasonal variations in plankton are related to a variety of environmental factors in

aquatic environments where temperature has been claimed to be the major determin-

ing factor in phytoplankton growth and development (Çetin and Şen 2004; Baquero

et al. 2006). The less abundance of plankton communities in the dry season mainly due

to high temperature and low DO. The occurrence of Chlorophyceae only in the wet

season and Bacillariophyceae in both two seasons indicates that Chlorophyceae are

more sensitive to pollutant discharge, whereas Bacillariophyceae seem to be very well

adapted to polluted zone (Begum and Khanam 2009; Shah et al. 2008). Among the



Table 2 List of plankton recorded from Buriganga, Turag, and Shitalakkhya rivers at wet and dry seasons

Plankton Class Species Wet season Dry season

Buriganga Turag Shitalakkhya Buriganga Turag Shitalakkhya

Phytoplankton Bacillariophyceae Fragilaria sp. ✓ ✕ ✓ ✕ ✕ ✓

Cyclotella sp. ✓ ✓ ✓ ✓ ✕ ✕

Cymbella sp. ✓ ✓ ✓ ✓ ✓ ✓

Gomphonema sp. ✓ ✓ ✓ ✓ ✓ ✓

Gyrosigma sp. ✓ ✓ ✓ ✓ ✓ ✓

Melosira sp. ✕ ✕ ✓ ✓ ✕ ✓

Navicula sp. ✓ ✓ ✓ ✓ ✓ ✓

Nitzschia sp. ✓ ✓ ✓ ✓ ✓ ✓

Synedra sp. ✕ ✕ ✓ ✕ ✕ ✓

Chlorophyceae Ankistrodesmus sp. ✓ ✕ ✓ ✕ ✕ ✕

Chara sp. ✕ ✓ ✕ ✕ ✕ ✕

Chlamydomonas sp. ✓ ✓ ✓ ✕ ✕ ✕

Chlorella sp. ✕ ✓ ✓ ✕ ✓ ✕

Chlorogonium sp. ✓ ✓ ✕ ✕ ✕ ✕

Cosmarium sp. ✓ ✕ ✕ ✓ ✕ ✕

Eudorina sp. ✕ ✕ ✓ ✕ ✕ ✕

Microspora sp. ✕ ✕ ✕ ✕ ✕ ✓

Oedogonium sp. ✕ ✓ ✓ ✕ ✕ ✕

Pediastrum sp. ✓ ✕ ✕ ✕ ✕ ✕

Pyrobotrys sp. ✕ ✕ ✕ ✕ ✓ ✕

Scenedesmus sp. ✓ ✕ ✓ ✕ ✓ ✕
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Table 2 List of plankton recorded from Buriganga, Turag, and Shitalakkhya rivers at wet and dry seasons (Continued)

Spirogyra sp. ✓ ✓ ✓ ✓ ✓ ✓

Spirulina sp. ✓ ✓ ✓ ✓ ✓ ✓

Ulothrix sp. ✓ ✓ ✕ ✕ ✕ ✕

Volvox sp. ✓ ✓ ✓ ✓ ✓ ✓

Zygnema sp. ✕ ✕ ✕ ✓ ✕ ✓

Cryptophyceae Cryptomonas sp. ✓ ✕ ✕ ✕ ✕ ✕

Chrysophyceae Mallomonas sp. ✕ ✕ ✕ ✕ ✕ ✓

Cyanophyceae Anabaena sp. ✕ ✓ ✓ ✕ ✕ ✓

Aphanizomenon sp. ✕ ✕ ✕ ✕ ✓ ✕

Chlococcus sp. ✕ ✕ ✕ ✓ ✕ ✓

Gomphosphaeria sp. ✕ ✓ ✓ ✓ ✕ ✕

Microcystis sp. ✕ ✕ ✓ ✕ ✕ ✕

Oscillatoria sp. ✕ ✓ ✓ ✕ ✓ ✓

Phormidium sp. ✕ ✓ ✕ ✓ ✓ ✕

Euglenophyceae Euglena sp. ✓ ✕ ✓ ✓ ✕ ✓

Phacus sp. ✓ ✕ ✓ ✕ ✕ ✓

Trachelomonas sp. ✕ ✕ ✓ ✕ ✕ ✕

Zooplankton Cladocera Bosmina sp. ✓ ✕ ✕ ✕ ✕ ✕

Daphnia sp. ✓ ✓ ✕ ✓ ✓ ✕

Diaphanosoma sp. ✕ ✓ ✕ ✕ ✕ ✕

Moina sp. ✓ ✓ ✕ ✓ ✓ ✕

Nauplius ✓ ✓ ✕ ✕ ✓ ✕

Copepoda Cyclops sp. ✓ ✓ ✕ ✓ ✓ ✕
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Table 2 List of plankton recorded from Buriganga, Turag, and Shitalakkhya rivers at wet and dry seasons (Continued)

Diaptomus sp. ✓ ✓ ✕ ✓ ✓ ✕

Rotifera Brachionus sp. ✓ ✕ ✕ ✓ ✕ ✕

Filinia sp. ✕ ✕ ✕ ✕ ✕ ✕

Keratella sp. ✓ ✕ ✕ ✕ ✕ ✕

Total 33 26 35 21 19 26
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zooplankton, the members of Cladocera occurred in lower number in the dry season

because Cladocera are highly responsive against pollutants; they even react against low

concentration of contaminants (Ferdous and Muktadir 2009). Copepoda were repre-

sented by two genera and appeared all year round as this group is much more tolerant

to O2 deficiency. On the contrary, lower representation by the members Rotifera in the

dry season and no genera in Turag is opposed to the studies of Solomon et al.

(Solomon et al. 2009) and Sharma et al. (2010) who reported the dominance of Rotifera

among all zooplankton. This is because the frequency of that group is lower in polluted

water than in unpolluted or lower polluted zones (Eloranta 1980).
Histopathological observations

After subsequent exposure of H. fossilis to Buriganga, Turag, and Shitalakkhya river

water samples, histopathological assessment of skin muscle, gills, liver, kidney, and

testis was made by comparing them with the control. Mild to severe alterations in the

different organs were assessed (Table 3).

The skin muscle of the control group was in a systemic arrangement of epidermis,

dermis, and muscle (Figure 2a). The major pathological signs observed in skin muscle

of fish exposed to the water of three different rivers were partial loss of epidermis, to-

tally missing epidermis, separation of dermis from epidermis, separation of muscle

from dermis, melanin pigment, and vacuole in muscle and dermis (Figure 2b,c,d). As

skin muscle is the primary site of exposure, pollutants affected the epidermis abruptly.

Melanin pigment is a prominent feature of chronic inflammatory response.

Gills are the primary site for any histological alteration as it is directly exposed to

polluted water. In our present study, the structure of gills in the control group was

almost normal. Primary and secondary gill lamellae were found with no pathology

(Figure 2e). Moderate to severe structural changes with mentionable pathological signs

were observed in the gills of treated fish including missing secondary gill lamellae,

hemorrhage, necrosis, hyperplasia and hypertrophy, gill clubbing, and fungal granuloma

(Figure 2f,g,h). Disruption in gill structure and function possibly due to various envir-

onmental factors, pH, ion concentration, heavy metals, and other pollutants were previ-

ously described (Tkatcheva et al. 2004; Peuranen et al. 2000; Playle 1998). Thickening

and lifting of the secondary lamellar epithelium due to hypertrophy are the first signs

that gills have been exposed to hazardous chemicals, or physical agents may have been

a response to increase the diffusion distance between DO and blood, which accordingly

was related to hypoxia in fish (Liu et al. 2010). Gill clubbing is due to excess mucus

production. In the presence of pollutants, the epithelium of the secondary lamellae has

a tendency to increase the number of mucus cell. Excess mucus from mucus cell causes

the fusion of secondary gill lamellae resulting in impaired respiration.

Alteration in the liver structure may be used as a biomarker indicating prior exposure

to environmental stressors. A constant exposure to toxicants may cause damage to the

liver tissue (Nero et al. 2005). In the present study, hepatocytes and other cells were

systematically arranged and no structural alteration was assessed in the liver of the con-

trol group (Figure 3a) where the treated group revealed a normal liver tissue structure

with severe alterations like deposition of body fat, hypertrophy and hyperplasia of hepa-

tocytes, rupture of blood vessel resulting in hemorrhagic area and necrosis, nuclear



Table 3 Histopathological effects on H. fossilis after 7-day exposure to Buriganga, Turag,
and Shitalakkhya river water

Histopathological alterations in organ Extent of alteration

Buriganga Turag Shitalakkhya

Skin muscle Melanin pigment +++ + +

Vacuoles − ++ +

Epidermal loss + ++ +++

Muscle separation ++ + +++

Gill Hemorrhage +++ +++ ++

Necrosis ++ − −

Gill clubbing ++ ++ ++

Fungal granuloma +++ +++ +

Missing of secondary gill lamellae +++ ++ ++

Hyperplasia and hypertrophy ++ ++ +

Liver Hemorrhage +++ +++ +

Pyknosis ++ ++ +

Vacuole + + ++

Necrosis + ++ +

Fatty degeneration ++ ++ +

Lipid droplet − ++ −

Nuclear alteration − − +

Hyperplasia and hypertrophy − − +

Kidney Degenerated kidney tubule + + +

Hemorrhage + + −

Vacuole ++ ++ −

Degenerated glomerular tubule − + −

Testis Scattered spermatozoa ++ + +

Vacuole ++ + ++

Testis interstitial space +++ +++ ++

Extent of alteration: severe (+++), moderate (++), mild (+), not found (−).
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alteration, pyknosis, vacuoles, and fatty degeneration (Figure 3b,c,d). A similar assess-

ment was made by Liao et al. (2007) who additionally found basophilic cytoplasm but

no lipid droplets in the hepatocytes of medaka (Oryzias latipes) exposed to single mer-

cury and single selenium. Farag et al. (2006) observed lipid droplets in the liver of

Chinook salmon (Oncorhynchus tshawytscha) after chronic chromium exposure,

whereas livers of the control group had no hepatocellular lipids. Liver necrosis was

found in Nile tilapia (Oreochromis niloticus) after exposure to sediment containing a

variety of organic chemicals (Perez et al. 2000). Shaw and Handy (2006) found marked

hepatic lipidosis (increased intracellular fat stores) in Nile tilapia (O. niloticus). Histo-

pathological alterations in the liver of Clarias gariepinus from polluted aquatic systems

were also found by Marchand et al. (2009).

This could be expected as the liver is the main detoxification organ involved in the

metabolism and excretion of heavy metals. It is therefore a target organ of various toxic

substances. Pollutants cause alterations in the liver, lysis of hepatocytes resulting in



Figure 2 Photomicrograph of skin muscle and gills of H. fossilis from control and from the three
rivers. Photomicrograph of skin muscle from (a) control, (b) Buriganga, (c) Turag, and (d) Shitalakkhya.
Photomicrograph of gills from (e) control, (f) Buriganga, (g) Turag, and (h) Shitalakkhya. Ed, epidermis; D,
dermis; M, muscle; Mp, melanin pigment; V, vacuole; PEL, partial epidermal loss; TEL, total epidermal loss;
Ms, muscle separation; H, hemorrhage; N, necrosis; Gc, gill clubbing; Fg, fungal granuloma; Msgl, missing of
secondary gill lamellae; HP, hyperplasia and hypertrophy (H and E × 430).
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Figure 3 Photomicrograph of liver and kidney of H. fossilis from control and from the three rivers.
Photomicrograph of liver from (a) control, (b) Buriganga, (c) Turag, and (d) Shitalakkhya. Photomicrograph
of kidney from (e) control, (f) Buriganga, (g) Turag, and (h) Shitalakkhya. H, hemorrhage; Fd, fatty
degeneration; Ld, lipid droplet; N, necrosis; P, pyknosis; Na, nuclear alteration; Hp, hyperplasia and
hypertrophy; Kt, kidney tubule; Gt, glomerular tubule; Dkt, degenerating kidney tubule; Dgt, degenerating
glomerular tubule; V, vacuole (H and E × 430).
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necrosis, breakdown of blood vessel resulting in a hemorrhagic area, cirrhosis, and ul-

timately death. Hepatic lipid accumulation is influenced by toxins and environmental

stress factors (Tanaka et al. 2002; Xu et al. 2009).

The kidney is a major organ involved in fluid and ionic balance of fish. In the present

study, the normal structures of the kidney tubule, glomerulus, and other hematopoietic

cells of kidney were found in a reference group (Figure 3e). Mild structural changes

were observed including vacuolation, necrosis, mild pyknosis, and mild tubular degen-

eration from the kidney of fish exposed to different river water (Figure 3f,g,h). However,

necrosis, fibrosis (scarring) and dilation of tubular lumina, and lipid peroxidation were

observed in affected kidneys as a result of chromium exposure, but not in reference

kidneys (Farag et al. 2006) as the exposure time was longer (105 days). The appearance

of vacuoles and tubular degeneration might be a result of a general metabolic disturb-

ance leading to an intensified reabsorption of amino acids and small proteins from the

ultrafiltrate (1993). Necrosis that resulted from accumulation of granules is due to kary-

olysis and vacuolation in the cytoplasm (Rangsayatorn et al. 2004).

The immature testes of the control fish possess a normal arrangement of spermato-

cytes in the testicular lumen and a smaller testis interstitial space (Figure 4a). Some

structural alterations were observed in the testes of treated fish such as the appearance

of some vacuoles, scattered spermatocytes in the testicular lumen, and larger testis

interstitial space (Figure 4b,c,d). Similar findings, except for vacuoles and scattered

spermatocytes, were also made earlier by Schultz et al. (2011) in male fathead minnows

exposed to antidepressant pharmaceuticals. Intersex gonads were recorded in several

species exposed to estrogen-polluted water source (Barnhoorn et al. 2004, Barnhoorn

et al. 2010). However, no intersex testis was observed in the present study. This may be

due to less exposure time and sexual immaturity of the fish. A larger testis interstitial

space from all treated groups indicated the presence of toxicants in the three reference

rivers. These prominent spaces are due to the accumulation of testis interstitial fluid

which interrupts the normal functioning of luteinizing hormone.
Figure 4 Photomicrograph of the testis of H. fossilis from control and from the three rivers. (a)
Control, (b) Buriganga, (c) Turag, and (d) Shitalakkhya. V, vacuole; Sz, spermatozoa; Ssz, scattered
spermatozoa; Tis, testis interstitial space (H and E × 430).
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AChE activity of H. fossilis exposed to three river water

H. fossilis were exposed to polluted water collected from Buriganga, Turag, and

Shitalakkhya for 10 days. After 10 days of exposure time, the AChE activities in the fish

brain were determined. In the present study, a steady decrease of AChE activity in the

fish brain was found in the case of H. fossilis exposed to water samples of the three riv-

ers (Figure 5). In the control fish, AChE activities were measured as 202.67 ± 6.51

nmol/min/mg protein. Furthermore, AChE activities in the brain of H. fossilis exposed

to water samples of Buriganga, Turag, and Shitalakkhya rivers were 104.00 ± 5.00,

102.00 ± 5.00, and 130.67 ± 3.51 nmol/min/mg protein, respectively. Significant inhib-

ition of AChE activity (P < 0.05) was observed from all river water samples compared

to the control. In this study, it was observed that due to polluted water exposure, AChE

activity decreased values were 48.78%, 49.63%, and 35.56% from Buriganga, Turag, and

Shitalakkhya river water samples, respectively.

AChE activity in vertebrates and invertebrates is a widely used biomarker of neuro-

toxicity. Moreover, fish AChE activity has been utilized as a highly sensitive biomarker

response of freshwater pollution (de la Torre et al. 2002). A significant decrease in this

cholinesterase activity in fish indicates the presence of neurotoxic pollutants in the

aquatic ecosystem. In the present study, H. fossilis were exposed to polluted water col-

lected from Buriganga, Turag, and Shitalakkhya for 10 days. After 10 days of exposure

time, the AChE activities in the fish brain were determined. In the present study, a

steady decrease of AChE activity in the fish brain was found in the case of H. fossilis ex-

posed to water samples of the three rivers (Figure 5). In the control fish, the AChE ac-

tivities were measured as 202.67 ± 6.51 nmol/min/mg protein. Furthermore, AChE

activities in the brain of H. fossilis exposed to water samples of Buriganga, Turag, and

Shitalakkhya were 104.00 ± 5.00, 102.00 ± 5.00, and 130.67 ± 3.51 nmol/min/mg protein,

respectively. Significant inhibition of AChE activity (P < 0.05) was observed from all

river water samples compared to the control. In this study, it was observed that due to

polluted water exposure, AChE activity decreased values were 48.78%, 49.63%, and

35.56% from Buriganga, Turag and Shitalakkhya river water samples, respectively. How-

ever, the larger decline of cholinesterase activity in the water samples of Turag and

Buriganga than that of Shitalakkhya compared to the control suggests that Turag and

Buriganga rivers are more highly polluted with neurotoxic compounds. The extent of
Figure 5 AChE activity measured in H. fossilis exposed to three different river water for 10 days.
Data presented as mean ± SD. *P < 0.05, **P < 0.01.
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AChE depression required to cause death in aquatic organisms. In fish, most estimates

lie in the range of 70% to 85% AChE reduction. Eel (Anguilla anguilla), over a 96-h ex-

posure period to pesticide, were able to survive up to 57% reduction in AChE activity

(Sancho and Andreu 1998).

Rank et al. (2007) noted a responding change in AChE activity to pollution in native

and transplanted mussels in the areas close to coastal chemical dumping sites with

some interpretation due to seasonal fluctuation in exposure situation. According to

Forget et al. (2003), neurotoxic contaminants brought by rivers caused a 70% to 80%

AChE inhibition in copepods from an estuary in comparison with those from upstream.

An ascending order of AChE inhibition with the increased concentration of arsenic in

Channa punctatus was mentioned by Roy et al. (2006). In contrast, the ameliorative po-

tential of selenium on arsenic-mediated inhibition of AChE activity was also described.

Combined in vivo and in vitro effects of cadmium and aluminum like heavy metal on

AChE inhibition have also been reported (Carageorgiou et al. 2004; Kohila et al. 2004).

Conclusions
This study showed that in dry season, DO of the three rivers existed below the standard

level (≥5 mg/l) and were extremely intolerable for plankton community that eventually

resulted in the lowest plankton count. Furthermore, structural damage in fish organs

and significant inhibition of AChE in the fish brain suggest the potency of the two bio-

markers against pollution. The biomarker data from this study can, in the future, be

used to evaluate the effects of management actions. With a view to minimize the devas-

tating effects of pollutants, effluent treatment plants are recommended to establish cor-

porately near the major industrial zone to treat industrial effluents before disposal.
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