
ORIGINAL RESEARCH Open Access

The presence of microcystins in fish Cyprinus
carpio tissues: a histopathological study
Amalia Mitsoura1, Ifigenia Kagalou1,3, Nikolaos Papaioannou2, Panagiotis Berillis1, Eleni Mente1 and
Theodoti Papadimitriou1,2*

* Correspondence: dotipap@gmail.
com
1Department of Ichthyology and
Aquatic Environment, School of
Agricultural Sciences, University of
Thessaly, Fytoko, Volos 38446,
Greece
2Faculty of Veterinary Medicine,
Aristotle University of Thessaloniki,
Thessaloniki 54124, Greece
Full list of author information is
available at the end of the article

Abstract

The occurrence of heavy cyanobacterial blooms has become a worldwide problem,
as a consequence of eutrophication of the aquatic ecosystems; furthermore, 60% to
75% of these blooms have been found to be toxic. Microcystins (MCYSTs), the
predominant toxins of cyanobacterial blooms, are associated with mortality and
illness in both animals and humans. Laboratory-controlled experiments studying the
effects of different microcystins on the common carp (Cyprinus carpio) have revealed
various histopathological alterations. The aim of the present study is to investigate
the effect of chronic or subchronic exposure of fish to microcystins under natural
environmental conditions by examining the possible histopathological changes
associated with a dense cyanobacterial bloom and determining the microcystin
contents of fish tissues. Common carps (C. carpio) were caught from Lake Karla
(Greece), during a dense cyanobacterial bloom. The concentration of MCYSTs in the fish
liver, kidney and muscle tissues was measured by enzyme-linked immunosorbent assay.
The pseudogaster contents were analysed, and a histopathological examination was
performed using light and electron microscopy. Severe alterations were detected in the
liver and the kidney, suggesting that the toxic effects were caused by various pollutants
that were particularly associated with microcystins. The histopathological findings are
also discussed, taking into consideration the health conditions of the common carp as
a commercial fish species. The mechanisms of expansion of the microcystins and the
poisoning of aquatic organisms (e.g. fish) are not yet known in the Lake Karla
ecosystem. Future research may focus on identifying the changes caused by
microcystins and other factors that exert similar effects on fish tissues, as well as on
establishing the overall combined effect of all these factors on fish health.

Keywords: Cyanobacterial bloom, Liver, Kidney, Muscle, Tissues, Cyprinus carpio, Lake
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Background
The frequent occurrence of cyanobacterial blooms has been regarded as a serious glo-

bal public health problem and a major environmental issue. Cyanobacteria can pro-

duce several toxic metabolites known as cyanotoxins (Ressom et al. 1994; Blaha et al.

2009). Many species of cyanobacteria produce toxic metabolites, peptides and alkaloids

that are a serious threat to the various uses of freshwater lakes and reservoirs. Toxin-

producing cyanobacteria that are widely distributed in freshwaters include the plank-

tonic N2-fixing genera of Anabaena, Aphanizomenon, Nostoc, Cylindrospermopsis and
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the non N2-fixing genera, such as Microcystis, Planktothrix and Oscillatoria (Welker

et al. 2004). Among these cyanobacteria, microcystins (MCYSTs) are the most abun-

dant group. Exposure to MCYSTs imposes a health risk on aquatic organisms, wild life,

domestic animals and humans through ingesting the cyanobacteria present in the water

or the food (Duy et al. 2000; Malbrouck and Kestemont 2006).

Fish, a group of organisms that represents one of the main inhabitants of the aquatic

systems, are frequently exposed to MCYSTS both directly and passively, leading to

their poisoning and/or their subsequent mortality (Carbis et al. 1996; Ernst 2008).

Fish typically either ingest cyanobacteria or prey that has already fed on cyanobacteria

(Tencalla et al. 1994; Fisher and Dietrich 2000). To a lesser extent, they can also absorb

the toxins directly from the water (Phillips et al. 1985; Smith et al. 2008). Currently, there

is a large body of literature describing experimental studies of cyanobacterial toxins in

aquatic systems and their acute toxicity effects; however, there are gaps about the toxico-

logical effects of these toxins under field conditions in environmentally relevant concen-

trations. Although acute toxicity experiments are useful in the study of toxicokinetics and

histopathological changes, such experiments do not represent the mode of exposure in a

natural environment (Ferrão-Filho and Kozlowsky-Suzuki 2011). Because the chronic and

subchronic effects in aquatic organisms might be more relevant than the acute lethal ef-

fects, studies addressing the exposure of biota in cyanobacteria-rich lakes have attracted

substantial attention (Ibelings and Chorus 2007; Ibelings and Havens 2008).

It is well known that one cyano-toxigenic mechanism is the potent inhibition of the

protein phosphatases 1 and 2A; this inhibition results in the abrogation of the protein

phosphorylation status, which is directly associated with the cytotoxic effects and tumour-

promoting activity of cyanotoxins (Carmichael 1994; Hooser 2000). In addition, studies of

fish pathology have shown that MCYST exposure can produce histopathological effects in

the gills, intestine and heart (Atencio et al. 2008; Jiang et al. 2011). Hepatic tumours and se-

vere hepatic haemorrhages, as well as the disruption of the hepatic cytoskeleton and the

subsequent, progressive liver necrosis and apoptosis, have been widely reported in fish

(Tencalla et al. 1994; Fischer et al. 2000). The degree of these MCYST-induced effects de-

pends on the exposure route. However, most of the studies on MCYSTs have been

performed using an IP injection or an oral uptake as the exposure route.

Cyprinus carpio (common carp) is a widespread species found in various freshwater

habitats, including almost all freshwater Greek lakes. The cyano-toxicological effects on

the common carp are thought to be quite important given its commercial importance

as a product of inland fisheries and aquaculture. Planktivorous fish, such as the carp,

intentionally ingest cyanobacteria and, in the process, are also exposed to cyanobacter-

ial metabolites through the aquatic food web (Malbrouck and Kestemont 2006).

Although these species are frequently exposed to cyanotoxins in their natural envir-

onment, they are also considered to be among the most tolerant in terms of survival.

No evidence exists regarding the sublethal effects of cyanotoxins, including pathological

alterations. Studies on endemic fish species in Europe, Australia and USA have shown

that fish liver histopathology is a useful biomarker of exposure to various contaminants

(Au 2004; Feist et al. 2004).

The primary aim of each of these studies was to identify histological changes in se-

lected target organs of bio-indicator fish species with regard to one or more specific

contaminants. Regarding cyanotoxins, in most cases, the liver and renal histological
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alterations were highly important (Fisher and Dietrich 2000; Molina et al. 2005; Lang

et al. 2006, Li et al. 2007a; Gutierrez-Praena et al. 2011).

In this context, the purpose of the present study is to assess the occurrence and distribu-

tion of MCYST in the tissues of the fish species C. carpio, as well as to evaluate the histo-

pathological alterations under cyanobacteria-rich conditions. The histopathological

findings were revealed by light and electron microscopy. To our knowledge, this is the first

study evaluating the histopathology of a freshwater biomarker under natural conditions to

provide information about the public health issue arising from human consumption.

Lake Karla (Central Greece) is a unique example (in Europe) of a shallow lake ecosystem

that was dried in the 1960s and has been reconstructed, establishing a ‘new’ ecosystem. Dur-

ing the past 2 years of the lake's rehabilitation (2009 to 2011), frequent and extensive cyano-

bacterial blooms have occurred that were dominated by toxin-producing species

(Oikonomou et al. 2012). During the same period, many episodes of fish mortality were also

reported. These events have received intense media coverage due to the lake's importance as

a major water reservoir in Greece. Fishing is also among the traditional economic activities

in the area, and the common carp is considered to be the main commercial fish species.

Methods
Lake Karla: limnological features of the study area

Lake Karla occupied the lowest part of the Thessaly plain and was considered to be one

of the most important wetlands in Greece until 1962. Surface runoff from the water-

shed and the floodwaters of the Pinios River (discharging via a constructed ditch) sup-

plied the lake with large quantities of freshwater. In 1962, the lake was completely

drained to create more land for agriculture. The reconstructed Lake Karla is located on

the lower depression of the Thessaly plain, a region of Central Greece (Figure 1). The

Figure 1 Map of the re-constructed Lake Karla located in the Thessaly region of Central Greece
(Oikonomou et al. 2012).
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lake lies between latitude 39°26′49″ and 39°32′03″ N and longitude 22°46′47″ and 23°

51′50″ E and has a surface area of 38 km2 with a perimeter of 228 km. The hydro-

logical regime of the lake is determined by the inputs (the rainfall on the lake and the

tributary inflows) and the outputs (evaporation). The lake has no natural outflow be-

cause the constructed tunnel draining into the Pagasitikos bay is currently closed. Con-

sidering the present environmental conditions, Papadimitriou et al. (2011) reported on

the water chemistry, and an in-depth analysis of the water column and sediment inter-

actions in Lake Karla has also been published by Jouni (2011). Both studies reported on

the highly eutrophic conditions of the lake and highlighted its nutrient-rich content

and high chlorophyll-a values. Moreover, there was also an evidence of phosphorous

mobilisation from the sediment to the water column. In the same period, Oikonomou

et al. (2012) confirmed the occurrence and dominance of toxic cyanobacteria species of

Anabaenopsis and Planktothrix, as well as a diverse microbial community indicative of

a hypertrophic status.

Fish collection and MCYST detection

Thirty specimens of C. carpio with a mean body weight and a mean body length of

1,032 ± 121 g and 30 ± 4.2 cm, respectively, were collected from Lake Karla via two

surveys during a period of dense cyanobacterial bloom (May and June 2011) using a

trammel net that has a 60-mm inner and 300-mm outer mesh size. Ten C. carpio fish

were also obtained from a fish farm (Hatchery station of river Louros-Ioannina, Hel-

lenic Ministry of Agriculture) and were used as controls. To extract the toxins from the

fish organs, the fish were sacrificed, and the liver, kidney and muscle tissues were ex-

cised, weighed and immediately frozen. Subsequently, all of the tissues were

homogenised separately, extracted in 100% methanol (Magalhães et al. 2001), stirred

overnight at room temperature and then centrifuged at 1,300 g for 15 min using a Uni-

versal 32 centrifuge (DJB Labcare Ltd., Buckinghamshire, England, UK). The superna-

tants were collected and stored overnight at 4°C. A 5-ml aliquot of each supernatant

was concentrated under nitrogen stream to 350 μl to remove the organic solvent. A

100-μl aliquot of the concentrated sample extract was diluted with 900 μl of distilled

water according to Sipia et al. (2002). The final sample was clarified using membrane

filters (pore size of 0.45 μm and diameter of 4 mm). The sample solutions were imme-

diately analysed by enzyme-linked immunosorbent assay (ELISA). For each ELISA

assay, the negative control and the four standards were assayed at least in duplicate.

The results are expressed in nanogrammes of MCYST-LR equivalents per gramme of

fish tissue.

MCYSTs were also measured in the water of Lake Karla. Two forms of MCYSTs

were investigated: dissolved in water (extracellular) and cell-bound in seston (intra-

cellular). For the latter, 1,000 mL of water was filtered on a Whatman GF/C filter

(Sigma Aldrich, St. Louis, MO, USA) which was immediately frozen at −20°C.
MCYSTs were extracted from the filter after placement in 100% methanol and stir-

ring overnight at room temperature followed by centrifugation at 1,300×g for 15

min. This extraction procedure was repeated three times, and the three supernatants

were pooled. The organic solvent was removed by placing the extract under nitrogen

stream. The remaining concentrated sample was subjected to ELISA. The results are
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expressed as microgrammes of cellular MCYST-LR equivalents per litre. For analysis

of dissolved MCYSTs, the filtered water was applied directly to ELISA. A commercial

Abraxis Microcystin ELISA kit was used (Warminster, PA, USA) following the in-

structions of the manufacturer.

The recovery of the method was determined by analysing the samples before and

after the addition of the pure MCYST and then subtracting the concentration of the

MCYSTs present in the sample prior to spiking. The matrix effect (i.e. the effect of

animal tissue) was checked by spiking the control tissues with the MCYST-LR standard

(2 μg/g). The response was compared to that of the 100% methanol spiked with the same

amount of the standard.

Microscopic analyses

Histological samples from the excised tissues, including the liver and the kidney, were

subjected to light and electron microscopy. For light microscopy, the samples were ini-

tially fixed in a 10% formalin buffer for 24 h at 4°C and were then immediately

dehydrated in a graded series of ethanol, immersed in xylene and embedded in paraffin

wax using an automatic processor. Sections of 5 to 7 μm were then mounted. After

deparaffinisation, the sections were rehydrated, stained with hematoxylin and eosin

(Humason 1972) and mounted with Cristal/Mount (Sigma Aldrich, St. Louis, MO,

USA). Subsequently, all of the tissues were examined microscopically, and their histo-

logical abnormalities were recorded.

For electron microscopy, tissue specimens were prefixed in 2.5% glutaraldehyde di-

luted in a 0.1-M sodium cacodylate solution for 24 h at 4°C. The specimens were

washed in the same buffer before and after fixation. Post-fixation was performed with

1% osmium tetroxide in 0.1-M sodium cacodylate for 2 h at 4°C. The specimens were

washed in the same buffer before and after post-fixation and then rinsed in distilled

water. Then, the specimens were dehydrated in a graded ethanol series and were subse-

quently immersed and left overnight in a 1:1 mixture of propylene oxide and the em-

bedding resin. The final step of the embedding took place in capsules containing agar

resin. Polymerisation of the resin was completed after 48 h at 60°C. Ultrathin sections

(60 to 80 nm) were cut with a Reichert Supernova ultramicrotome (DeKalb, IL, USA).

The sections were mounted on a copper grid and stained with uranyl acetate and lead

citrate. The tissue sections were examined in a Philips CM10 electron microscope

(Amsterdam, The Netherlands).

The common carps are stomachless fish. The short oesophagus connects the poster-

ior pharynx to the anterior part of the intestine, the pseudogaster. Microscopic analysis

of the pseudogaster contents was also performed on the examined fish specimens. The

pseudogaster was removed from fresh carps, and samples of its contents were collected

and kept at 1°C to 5°C until further analysis. Two aliquots of each sample were taken,

and one of the aliquots was diluted in distilled water. Dilution was performed in a glass

test tube by mixing 330 μl of the sample with 330 μl of distilled water. The non-diluted

pseudogaster contents (330 μl) were placed on one end of the slide. The cover slip was

placed at a 45° angle on top of the sample to avoid creating air bubbles. Similarly, 330

μl of the diluted pseudogaster contents was placed on the other end of the slide, and

optical microscopy images were obtained from both sides of the slides.
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Statistics

The data are expressed as the means ± SD. A two-way analysis of variance (ANOVA)

was used to compare the means of the MCYSTs contents between the tissues and the

sampling periods. The results were considered statistically significant when P < 0.05.

When the ANOVA results indicated a significant effect, Tukey's multiple comparison

test was used to compare the differences between the means. All statistical analyses

were performed with SPSS vers. 20.0 for Windows (Chicago, IL, USA).

Results
MCYST in the fish tissues and lake water

All fish samples of C. carpio examined during the present study contained MCYSTs

(Table 1). According to the statistical analysis, there were significant differences between

the tissues (n = 20, F = 12.53, P < 0.05). However, there were no significant differences in

MCYST concentration between the sampling periods (n = 20, F = 0.05, P > 0.05). The

highest MCYST concentration was found in the liver (732 ± 350 ng/g), followed by the

kidney (362 ± 207 ng/g), while the lowest concentrations were detected in the muscle tis-

sues (114 ± 25 ng/g) (Table 1). During the second survey, in June, the kidney had a higher

concentration of MCYST than the liver tissues (696 ± 258 and 346 ± 156 ng/g, respect-

ively); again, the lowest MCYST values were found in the muscle tissues (108 ± 33 ng/l)

(Table 1). The examined tissues of the control C. carpio individuals contained no

MCYSTs when examined by ELISA.

The extracellular MCYST values were 2.03 ± 0.32 μg/l and 3.01 ± 0.41 μg/l for May

and June, respectively. The respective intracellular MCYST values were 4.19 ± 0.33 μg/l

and 5.5 ± 0.29 μg/l (Table 1) for the same time periods as above.

The recovery of MCYST that we obtained from the spiked samples was 77 ± 2.5% for

liver, 73 ± 3.2% for kidney and 72.6 ± 2.12% for muscle. The matrix effect was negli-

gible (from 0.08% to 5.2% of the differences between the matrix and the methanol re-

sults, with an average of 1.9 ± 0.7%).

Mortality and macroscopic observations

No fish mortalities were observed during the studied period, and the appearance of the

examined organisms was macroscopically normal. All of the examined samples (100%)

of the fish pseudogaster contents contained various cyanobacterial species, with the

dominant species being Microcystis aeruginosa and Planktothrix agarrdii (Figure 2).

While examining the test organs, macroscopic lesions were observed in the liver and

Table 1 MCYST concentrations in C. carpio tissues (ng/g), extracellular MCYST(μg/l) and
intracellular MCYST (μg/l) in May and June 2011

May 2011 June 2011

C. carpio liver 732 ± 350 346 ± 156

C. carpio kidney 362 ± 207 696 ± 258

C. carpio muscle 114 ± 25 108 ± 33

Extracellular 2.03 ± 0.32 3.01 ± 0.41

Intracellular 4.19 ± 0.33 5.5 ± 0.29

Values are given as mean ± SD. In all of the control C. carpio individuals' examined tissues, there were zero levels
of MCYST.
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the kidney. Morphological changes included liver discoloration and brittleness, as well

as ecchymoses and petechiae (Figure 3). The kidney appeared brittle and normal in

colour. Neither the organ displayed appeared enlarged. No pathological changes were

observed in the control samples.

Histopathology under light microscopy

Histopathological changes were observed in the liver and the kidney of the fish speci-

mens in comparison with the control ones. However, no differences were observed

Figure 2 Microscopic examination of Cyprinus carpio stomachic contents. (A) Microcystis aeruginosa
and (B) Planktothrix agarrdii. Bar = 25 μm.

Figure 3 Cyprinus caprio liver. (A) Hydropic degeneration, granular glycogen (circle) and sporadic
haemorrhagic symptoms (arrows). (B) Onion-like cells (circle) and sporadic haemorrhagic symptoms
(arrows). (C) Capillary fracture (arrow). (D) Control, there are no histopathological degenerations.
Bar=62.5 μm. (E) Macroscopic degenerations of the liver. Discoloration (arrow) and petechiaes (star)
were observed.
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among the sampling surveys. Histopathological lesions were detected in the liver and

the kidney and were characterised by hydropic degeneration and necrosis. Pathological

changes in the fish liver included loss of the architecture structure, onion-like cells,

focal necrosis, granular glycogen, nuclei pyknosis (Figure 3) and sporadic haemorrhagic

symptoms. The kidney pathology was characterised by the degeneration of the renal tu-

bule, glomerulopathy, glomerular atrophy and a dilated Bowman's capsule (Figure 4).

No pathological changes were observed in the muscles.

Figure 4 Cyprinus carpio kidney. (A) Degeneration of the renal tubular (arrow) and glomerular atrophy
(star). Bar = 62.5 μm. (B) Glomerulopathy and dilation of Bowman's capsule (arrow). (C) Control, there are
no histopathological degenerations. Bar = 43.48 μm.

Mitsoura et al. International Aquatic Research 2013, 5:8 Page 8 of 16
http://www.intaquares.com/content/5/1/8



Ultrastructural histopathological observations

Histopathological alterations were observed in the liver and the kidney of all fish sam-

ples except for the control ones. Both organs appeared swollen, with a loss of the par-

enchymal architecture. An apparent lysis of the membranes of the hepatic cells

resulting in necrotic cells was observed, along with vacuolisation and the presence of

lipid droplets. The fragmentation of the nuclear envelope, the swelling of mitochondria,

the fragmentation and vesicularisation of the endomembrane system, the pyknosis of

nuclei and karyorrhexis were also observed in the liver (Figure 5). Nuclei pyknosis, nu-

clear envelope fragmentation and proliferation of the lysosomes were observed in the

kidney (Figure 6).

Discussion
The only study before Lake Karla dried out was by Ananiadis (1956). He reported signs

of eutrophication and occurrence of few cyanobacterial species. Our data concerning

lake water, suggest that the re-constructed Lake Karla is experiencing the occurrence of

significant MCYST concentrations. Papadimitriou et al. (2011) previously reported the

presence of MCYST concentrations in Lake Karla ranging between 0.75 and 3.90 μg/l,

while Oikonomou et al. (2012) and Papadimitriou et al. (2013) confirmed the occur-

rence of the toxic cyanobacterial species of Anabaenopsis, Planktothrix and Microcystis

Figure 5 Ultrastructural observation of Cyprinus carpio's liver tissue. (A) Nuclear envelop
fragmentation (stars) and a swelling mitochondrion (arrow). Bar = 0.37 μm. (B) Fragmentation of
endoplasmic reticulum (arrows) and mitochondria internal membrane system (star). Bar = 0.60 μm. (C) Lysis
of the hepatic cell's plasma membrane. Mitochondria (arrows) in the extracellular space. Bar = 1.74 μm. (D)
Karyorrhexis. Bar = 1.74 μm.
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Figure 6 Ultrastructural observation of Cyprinus carpio's kidney tissue. (A) Lipid droplets (stars) are
present. Bar = 1.74 μm. (B) Pyknotic nuclei (arrow). Bar = 3.33 μm. (C) Proliferation of lysosomes in the cell
(circle). Bar = 1.74 μm.
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in Lake Karla. The above cyanobacterial species found in Lake Karla have been shown

to produce a variety of toxins and alkaloids with toxic activity in many lakes worldwide

(Sivonen and Jones 1999; Sabour et al. 2005; Kurmayer et al. 2005; Hisem 2008).

MCYST concentrations (intracellular and extracellular) found in Lake Karla are similar

to those reported for other Mediterranean lakes in Turkey (Albay et al. 2003) and in

Portugal (Vasconcelos et al. 1996), but generally, lower to those of the temperate lakes

in Canada (Kotak et al. 1996) or in Finnish lakes (Lindholm et al. 2003) and also lower

than those reported for Brazil lagoons (Magalhães et al. 2001). Extracellular and intra-

cellular MCYST concentrations found in Lake Karla are comparable to those found in

another shallow lake in Greece, Lake Pamvotis (Papadimitriou et al. 2012a). It is worth

noting that the comparable MCYST concentrations found in Lake Pamvotis, were asso-

ciated with the bioaccumulation of MCYST in tissues of aquatic organisms

(Papadimitriou et al. 2012a).

Studies addressing the chronic effects resulting from the exposure of cyprinids to

sublethal concentrations of MCYSTs are quite limited. Our study focuses on the histo-

pathological alterations observed in the C. carpio species found in the eutrophic Lake

Karla, thus addressing the effects of the environmentally relevant MCYST concentra-

tions. This study revealed that tissues from all fish samples caught during the sampling

surveys contained MCYSTs. This result suggests that the MCYST content in the

aquatic environment was adequate to promote MCYST accumulation in the exposed

fish. It is well documented that the primary target organ for MCYST accumulation is

the liver (Ernst et al. 2006; Papadimitriou et al. 2012a; Moutou et al. 2012), whereas

muscle usually presents the lowest MCYST content. The preferential accumulation in

the liver may be attributable to the high density of the organic anionic transporters on

the surface of hepatocytes, while the process known as presystematic hepatic elimin-

ation could prevent or at least minimise the distribution of MCYSTs to other parts of

the body (Fischer et al. 2005). However, there is also an evidence that the carp's kidney

is the first organ to be affected by MCYST in terms of pathological changes (Fisher and

Dietrich 2000).

MCYSTs produced by cyanobacteria in an aquatic environment have been shown to

exert adverse effects on fish. Fish are exposed to MCYSTs directly during feeding and/

or passively through their continuous contact with their aquatic environment; cyano-

bacterial metabolites are known to be transported by the aquatic food web (Xie et al.

2004; Smith et al. 2008). Cyanotoxicity can result in two types of structural changes.

One is the direct toxic effect of the pollutant, which leads to tissue degeneration and

necrosis, and the other is the development of compensatory mechanisms, such as cellu-

lar hyperplasia, to address the stressor (Li et al. 2007b). The histopathological changes

observed in tissues are the result of histological-level reactions of the fish; thus, histo-

pathology represents a useful tool to assess the degree of toxicity.

According to Palikova et al. (2011), cyanobacteria are regular components of the cyp-

rinid diet, and it appears that M. aeruginosa comprises a significant portion of the carp

diet when a bloom formation occurs (Carbis et al. 1997). Nevertheless, carps are not

able to avoid the ingestion of toxic cyanobacteria and their toxins in eutrophicated

lakes (Tencalla et al. 1994). M. aeruginosa and P. agarrdii found in the pseudogasters

of the examined fish were also found in the water of Lake Karla according to the stud-

ies of Papadimitriou et al. (2013). This confirms the direct exposure of fish originated
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from Lake Karla to cyanobacteria and to MCYSTs through feeding. Many previous

studies have demonstrated the acute toxicological effects induced by MCYSTs in fish

using carps as bioassay models. Laboratory-controlled experiments using different

MCYSTs, doses and routes of administration in the common carp (C. carpio) have

shown severe histopathological effects (Rabergh et al. 1991; Fisher and Dietrich 2000;

Jiang et al. 2011). Jiang et al. (2011) exposed C. carpio individuals to 10 μg/l MC-LR for

14 days, and the results included some liver histopathological changes, such as slight

swelling of hepatic cells and partially dissolved parenchymal architecture characterised

by vacuolar degeneration with damage of the nuclei (pyknosis, karyolysis). Although

the dose of 10 μg/l MC-LR is higher than the MCYST concentrations found in Lake

Karla, the histopathological observation found in common carps from Lake Karla are

similar. This may be explained by the effect of chronic or subchronic exposure of fish

to cyanobacterial blooms containing MCYSTs.

Our histopathological observations seem to be in agreement with previous reports

concerning cyanobacterial toxicity (Carbis et al. 1996; Fisher and Dietrich 2000;

Malbrouck and Kestemont 2006; Qui et al. 2007; Jiang et al. 2011). Concerning the liver

histopathology, the fish exhibited hydropic degeneration and necrosis, in agreement

with the findings reported by Rabergh et al. (1991), Snyder et al. (2002), Sugaya et al.

(1990), Tencalla et al. (1994), Fisher and Dietrich (2000) and Liu et al. (2002). In con-

trast to mammals, only a few studies have demonstrated haemorrhagic effects due to

cyanobacteria and MCYSTs in fish (Tencala and Dietrich 1997; Tencalla et al. 1994;

Jiang et al. 2011). Kidney alterations included degeneration of the renal tubule,

glomerulopathy and dilation of Bowman's capsule. According to Carbis et al. (1996),

Fischer and Dietrich (2000) and Kotak et al. (1996), the MCYST-induced renal path-

ology appears to be generally restricted to the proxima in the posterior part of the

kidney. Our results seem to confirm these previously published findings.

Very few in vivo studies have been performed regarding the toxic effects of MCYSTs

on the ultrastructures of the hepatocytes in the fish, and very little knowledge is avail-

able about the kidney's ultrastucture histopathology (Li et al. 2001; Atencio et al. 2008;

Trinchet et al. 2011). Our main histological findings were loss of the parenchymal

architecture, hepatocyte necrosis with vacuolisation of the cytoplasm and the presence

of lipid droplets. Vacuolisation has been reported in isolated hepatocytes from the com-

mon carp (Li et al. 2001) after oral exposure to MCYSTs. According to Atencio et al.

(2008) and Molina et al. (2005), vacuolisation might indicate an imbalance between the

rate of synthesis of substances in the parenchymal cells and the rate of release of these

substances into the systemic circulation. Atencio et al. (2008) have observed

glomerulopathy with thickening of the basal membrane, an increased number of lyso-

somes in the proxima tubules and generalised vacuolisation. We also found degenera-

tions that were mainly associated with the irregularity of the endomembrane system,

the swelling of mitochondria and the fragmentation of the mitochondria internal mem-

brane system; these findings are more or less consistent with the observations made by

Carbis et al. (1996) after exposing common carps to the MCYST.

It is important to note that the cyanobacterial bloom usually contains many different

toxins that have been found to be more toxic than the individually purified component

toxin(s) (Ibelings and Chorus 2007). Thus, our histopathological observations provide

information on a natural model of disease based on the synergies between the toxicity
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of the various toxins and the other factors, rather than on the quantities of the individ-

ual compounds. Moutou et al. (2012) studied the response of the oxidative system in

the same fish species under MCYST-rich conditions. They reported that under natural

conditions, the response of the GSH/GSSH system and the catalase activity may also

depend on other factors besides continuous exposure.

Lang et al. (2006) suggested a categorisation system for the diagnosis of liver histo-

logical alterations in terms of the toxicological relevance of these alterations based on

the findings in flatfish species. Recently, van Dyk et al. (2011) have applied this system

to evaluate pollution-related histopathological changes in the catfish. These categories

include non-specific lesions, early toxicopathic non-neoplastic lesions, pre-neoplastic

lesions and neoplasms. The alterations listed within each of these categories are widely

accepted as useful indicators for monitoring the biological effects of contaminants on

fish (Feist et al. 2004). Using the proposed categories as guidelines, it is clear that many

of these alterations were also observed in C. carpio during the present study, such as

early toxicopathic, non-neoplastic lesions, including hepatocellular necrosis, nuclei

pyknosis, vacuolisation and steatosis.

In conclusion, common carps from Lake Karla that were exposed to a cyanobacterial

bloom contained high amounts of MCYSTs in the examined tissues. Regarding the risk

that MCYST toxicity poses to public health, the World Health Organization (World

Health Organization 1998) proposes 0.04 μg MC-LR equivalent/kg per day as the toler-

able daily intake for MCYSTs. The estimated daily intake for C. carpio samples from

Lake Karla exhibited MCYST amounts above the WHO guideline (World Health

Organization 1998); thus, there might be potential harmful effects on human health

from the lifelong consumption of contaminated fish that cannot be overlooked.

In general, our results confirmed the hypothesis that chronic exposure to a

cyanobacteria-rich environment and, thus, to MCYST can lead to pathological changes

in the exposed carps. The potential ecological risk for the species C. carpio, which al-

ways dominates eutrophic, hypertrophic lakes and reservoirs, is also demonstrated.

However, because MCYSTs almost never occur in nature as single species but rather

occur as a mixture of toxins, the present toxicological profile could obviously be the re-

sult of multiple cyanotoxins that were present in the lake water and exerted a synergis-

tic effect on the health of C. carpio. In our study, fish were collected during the spring

and the early summer; therefore, it is unlikely that the histopathological differences

identified would be related to the seasonal variations. Furthermore, we did not estimate

the fish age, but all fish samples were of similar body size; thus, it is likely that all fish

were of the same age class. However, taking into consideration the different accumula-

tion rates in the different age classes (Papadimitriou et al. 2012b), there is a need for

further research regarding the factors, such as seasonal variation and fish age, when

histopathological observations are evaluated. Given the number of contradictory results

regarding the effects of cyanotoxins in various biomarker studies, histopathological ob-

servations could be quite sensitive biomarkers that reflect the cyanotoxicity effects at

the cellular level. The results of the current study may contribute to supporting the

cause-effect relationship between fish pathology and the pollution levels in the fresh-

water environment.

Finally, studies about the effects of cyanobacteria and the accumulation of their

toxins in the Mediterranean region are of great importance, as the incidence and

Mitsoura et al. International Aquatic Research 2013, 5:8 Page 13 of 16
http://www.intaquares.com/content/5/1/8



persistence of toxic blooms in this region are greater than those observed in temperate

regions. Monitoring programmes, specifically at environmentally sensitive sites such as

the protected Lake Karla, should include the establishment of baseline histopatho-

logical data for the endemic and bio-indicator fish species of the region.

Conclusions
The results of the present study contribute to our knowledge on the accumulation of

microcystins in fish tissues under algal bloom rich conditions. Carps from Lake Karla

that were exposed to a cyanobacterial bloom contained high amounts of MCYSTs in

the examined tissues appearing also histopathological changes.

Our results also confirmed that the liver accumulated the highest MCYST concentra-

tions, while the lowest concentrations were detected in the muscle tissues. Histopatho-

logical findings could serve as sensitive signals concerning cyanotoxicity. In terms of

public health the consumption of carps as lifelong dietary items might cause harmful

effects on human health.
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