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Abstract Efficacy of phytoremediation using two macrophytes Azolla pinnata and Lemna minor in

decontaminating the toxic effluent released during recovery of metals from polymetallic sea nodules was

analysed by applying fish bioassay. The economically important fish, L. rohita, was exposed to both, the

Azolla-phytoremediated effluent (APE) and Lemna-phytoremediated effluent (LPE) for assessment of metal

bioaccumulation (Fe, Mn, Zn, Cu, Pb, Cr and Cd) and alterations in biochemical (proteins, lipids, glycogen,

cholesterol, AST (aspartate amino transferase), ALT (alanine amino transferase) and ALP (alkaline phos-

phatase) composition of various tissues. Accumulation of metals (e.g. Mn, Zn, Cu and Fe) decreased in most

of the tissues exposed to both the phytoremediated effluents perhaps due to decontamination of metals by the

two macrophytes. The significantly recovered concentrations of different biomolecules included glycogen,

lipids, cholesterol and proteins. The activities of three marker enzymes (AST, ALT and ALP) in phytore-

mediated effluent-exposed fish also decreased due to lowering of the toxicity of the decontaminated effluents

achieved by phytoremediation. The improvement in different biomolecules and reduction in metal concen-

tration in the fish tissues were better in APE exposed fish. However, their concentrations in both the phyto-

remediated effluent-exposed fish failed to reach the levels of control fish. This study points towards the

efficacy of phytoremediation in detoxification of metal-contaminated effluents often released following

industrial activities.
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Introduction

Various domestic, industrial and mining toxic effluents are detoxified by several chemical, physical and

mechanical processes for decontamination prior to their release into the aquatic ecosystem. Such types of

detoxifying processes are not enough to contain pollution. Often due to cost factor there is a tendency to evade

the mandatory treatment of the effluent for detoxification by the industrial houses. Hence biologists intervened

and tried to evolve cheap and effective methods of phytoremediation for decontamination of the toxic effluents

polluted with heavy metals (Mishra et al. 2008; Rai and Tripathi 2009; Vaseem and Banerjee 2012; Bharti and

Banerjee 2012).
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Due to acute scarcity of certain economically useful metals like Cu, Cr, Co, Mn and Ni, etc., metallurgist at

National Metallurgical Laboratory, Jamshedpur, India, are trying to develop indigenous technique to extract

metals from polymetallic sea nodules which are abundantly found at sea bed. For the metal extraction purpose

the nodules are processed through many metallurgical methods including reduction, ammonia leaching, sol-

vent extraction, electro winning and smelting (Kumar et al. 1990; Jana et al. 1999; Agarwal and Goodrich

2008; Biswas et al. 2009). Such metallurgical processes also generate large amount of toxic effluent (PMN

effluent). The toxicity of this waste water is due to contamination of toxic metals which cause extensive

damage to the aquatic fauna (Vaseem and Banerjee 2013a, b). To lower the toxicity load of metals in this

effluent, Vaseem and Banerjee (2012) successfully demonstrated decontamination of the effluent by phyto-

remediation technology.

There are numbers of reports related to application of phytoremediation in decontaminating the effluent

released from various industries (Rai, 2008, 2010; Rai and Tripathi 2009). However, there are no bioassay data

using fish to analyse the improvement in effluent quality following phytoremediation. Hence to bridge this gap

the decontaminated effluents were subjected to fish bioassay analysis using a major carp (Labeo rohita) as

bioindicator. Fish have widely been used as able bioindicator of variously contaminated waters hence selected

(Gupta et al. 2009; Uysal et al. 2009; Maceda-Veiga et al. 2012). Six organs systems (e.g. muscles, liver, gills,

kidney, brain and skin) of the fish exposed to the Azolla-phytoremediated effluent (APE) and Lemna-phy-

toremediated effluent (LPE) were examined for metal (Mn, Cu, Zn, Fe, Pb, Cr and Ni) bioaccumulation and

alterations in biochemical (proteins, lipids, glycogen, DNA, RNA, cholesterol, AST (aspartate amino trans-

ferase), ALT (alanine amino transferase) and ALP (alkaline phosphatase) composition.

Materials and methods

Analysis of PMN effluent and its phytoremediation

Physicochemical parameters and concentrations of different metals (Fe, Mn, Zn, Cu, Pb, Cr and Cd) in PMN

effluent were examined following the standard methods for evaluation of water and waste water (APHA-

AWWA-WPCF, 1998) and atomic absorption spectrophotometer (AAS), respectively (Perkin-Elmer Model

2380, Inc., Norwalk, CT, USA). The details of the physicochemical characteristics of raw PMN effluent have

been given by Vaseem and Banerjee (2012) and their finding shows that this effluent has been extremely toxic.

When phytoremediated separately with two different macrophytes (Azolla pinnata and Lemna minor) for

7 days, the effluents were partially but significantly detoxified due to lowered concentration of different metal

species (Vaseem and Banerjee 2012).

Experimental fish

Healthy specimens of the Indian major carp L. rohita were collected from the hatchery situated in Banaras

Hindu University, Varanasi, India. The fish were acclimated to the laboratory conditions for 1 month in plastic

tanks equipped with a continuous supply of well-aerated and dechlorinated water (room temperature:

24 ± 2 �C) and under natural photoperiod. During this period, fish were fed ad libitum with commercial fish

pellets. The water was renewed after every 24 h with routine cleaning of the tanks. The examined water

quality parameters were: dissolved oxygen (7.0–7.5 mg/l), pH (7.1–7.4), conductivity (125–130 lS/cm),

alkalinity (35–43 mg/l as CaCO3) and total hardness (39–50 mg/l as CaCO3).

Experimental design

Acclimated fish were divided into four groups, each of 20 fish (weight of 28–30 g and length of 11–12 cm):

one group exposed to 50 L of tap water; the second group to 50 L of the raw PMN effluent, third to 50 L of

APE and the fourth to 50 L of LPE in a 80-L capacity plastic tubs for maximum period of 20 days (beyond

which fish failed to survive) with regular renewal of water after every 5 days of interval (semi-static bioassay).

Fish were regularly fed during experiment. Eight fish from each group were cold anesthetised and killed after

20 days of exposure. Three replicates of each experimental set were prepared. Entire brain, liver, kidney, gills,

123

18 Int Aquat Res (2015) 7:17–26



small fragments of muscle and skin were dissected out and subjected for metal bioaccumulation (Mn, Cu, Zn,

Fe, Pb, Cr and Ni) and biochemical (total proteins, total lipids, glycogen, cholesterol, AST, ALT and ALP)

analyses.

Metal analyses

For analyses of metal accumulation six tissues (muscle, gills, liver, kidneys, brain and skin) of control, raw

effluent-exposed and APE and LPE-exposed fish were collected in petri-dish and dried in an oven at 120 �C till

there was no weight loss. Subsequently, the tissue samples were transferred to digestion flasks containing an

acid mixture (nitric acid and perchloric acid (4:1 v/v). The digestion flasks were further heated on a hot plate at

120 �C till the tissues were dissolved. Double distilled water was added to the digestion samples to make their

volume to 25 ml. Concentration of metals in the samples were analysed using atomic absorption spectro-

photometer (AAS, Perkin Elmer Model 2380, Inc., Norwalk, CT, USA) (detection limits of AAS for metals in

mg/kg have been given in Table 1). Concentration of Ni was found to be below the detectable level in all the

tissues of APE and LPE exposed fish hence it was not shown in the Table 2.

Biochemical analysis

Total proteins Following Lowry’s (Lowry et al. 1951) method total protein level (mg/g) was estimated using

bovine serum albumin as standard.

Total lipids Following the method of Folch et al. (1957) total lipids from the tissue samples were extracted

in chloroform methanol mixture (2:1)

Transaminase activities For measurement of the AST and ALT activities (lmole pyruvate formed/mg/h)

method of Reitman and Franckel (1957) was used by using pyruvate as a standard.

Alkaline phosphatase activity The method of Bergmeyer (1956) was applied to determine the ALP activity

(lmole PNP formed/mg/h) where sodium p-nitrophenylphosphate was used as substrate.

Cholesterol Zlatkis et al. (1953) method was used for estimation of cholesterol concentration (mg/g).

Glucogen Glycogen content (mg/g) was analysed following the method of Caroll et al. (1956) using

anthrone reagent. Glucose was used as a standard.

Statistical analysis

For statistical analyses one-way analysis of variance (ANOVA) (p \ 0.05) was performed followed by

Duncan’s multiple range test (DMRT). Values in the tables and figures are given in mean ± SD. In tables and

figures alphabets denote the result of DMRT. Different alphabets show significant difference (p \ 0.05) in the

different values of control fish, raw effluent exposed fish, APE exposed fish and LPE exposed fish.

Results

Metal accumulation in the fish exposed to phytoremediated effluents

PMN effluent was found to be highly toxic due to its contaminated condition (BOD: 182 ± 3 mg/l, pH: 5.2,

sodium: 130.26 ± 1.96 mg/l, potassium: 3.42 ± 0.07 mg/l, sulphate: 2300 ± 4.515 mg/l, carbonate:

296 ± 2.2 mg/l, Mn 4.9 mg/l, Cu 1.432 mg/l, Zn 0.816 mg/l, Fe 0.762 mg/l, Pb 0.655 mg/l, Cr 0.07 mg/l, Cd

0.018 mg/l) (Vaseem and Banerjee (2012). Following exposure of the fish to this toxic effluent the concen-

tration of all the studied metals increased greatly in all the six tissues. Decontamination of effluent with both

Table 1 Detection limits for metals in tissues

Metals Zn Mn Cu Fe Pb Cr Ni

Detection limit (mg/kg) 0.1 0.1 0.01 0.1 0.01 0.02 0.01
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the macrophytes caused significant depletion in concentration of these metals. The concentration (mg/l) of

metals in the Azolla-phytoremediated effluent was: Mn 0.19 ± 0.001, Cu 0.039 ± 0.000, Zn 0.019 ± 0.000,

Fe 0.228 ± 0.08, Pb 0.026 ± 0.000, Cr 0.005 ± 0.000. Similarly Lemna-phytoremediated effluent had: Mn

0.301 ± 0.003, Cu 0.204 ± 0.001, Zn 0.306 ± 0.002, Fe 0.2 ± 0.001, Pb 0.1 ± 0.009 and Cr 0.026 ± 0.00.

The percentage of decontamination of the metals reported after phytoremediation was in the order: 96 % of

Mn, 97 % of Cu, 70 % of Fe, 96 % of Pb, 93 % of Cr and 78 % of Cd by Azolla and 94 % of Mn, 86 % of Cu,

62 % of Zn, 74 % of Fe, 84 % of Pb, 63 % of Cr and 78 % of Cd by Lemna phytoremediation (Vaseem and

Banerjee 2012).

Table 2 Metal concentrations (mg/kg) in different tissues of the fish exposed to raw effluent, APE and LPE as well as control

(wild) fish

FAOm (1983) Mn (nln) Cu (10) Zn (50) Fe (5.6) Pb (nl) Cr (1)

Skin

Conto 0.52 ± 0.22a 7.53 ± 3.25a 35.75 ± 0.77a 21.73 ± 4.38a bdl bdl

REEp 16.54 ± 0.27b 37.99 ± 0.62c 50.35 ± 0.82c 135.00 ± 2.20c bdl 7.99 ± 0.13

APEEq 1.23 ± 0.62a 9.19 ± 0.41a 37.01 ± 1.85a 45.51 ± 1.25b bdl bdl

LPEEr 1.45 ± 0.81a 13.14 ± 0.69b 41.62 ± 1.24b 44.74 ± 1.1b bdl bdl

Muscles

Cont 0.56 ± 0.01a 1.8 ± 0.03a 5.65 ± 0.09a 38.45 ± 0.83a bdl bdl

REE 10.35 ± 0.22b 11.34 ± 0.51c 81.14 ± 3.69c 61.08 ± 2.78c 2.1 ± 0.03 11.83 ± 0.25a

APEE 0.77 ± 0.20a 2.97 ± 1.30ab 6.09 ± 0.56a 47.29 ± 0.31b bdl bdl

LPEE 0.82 ± 0.46a 3.8 ± 1.07b 20.12 ± 1.46b 47.5 ± 0.59b bdl 0.64 ± 0.38b

Gills

Cont 0.61 ± 0.20a 3.86 ± 0.17a 5.69 ± 2.52a 14.87 ± 2.79a bdl bdl

REE 48.67 ± 0.79b 60.55 ± 0.99b 98.03 ± 1.60c 129.36 ± 2.11c 0.8 ± 0.02 12.70 ± 0.20a

APEE 0.86 ± 0.08a 4.58 ± 1.09a 7.28 ± 0.69b 22.66 ± 1.16b bdl bdl

LPEE 0.92 ± 0.17a 5.14 ± 1.25a 17.36 ± 1.5b 20.77 ± 1.02b bdl 1.54 ± 0.516b

Liver

Cont 0.33 ± 0.23a 28.19 ± 1.06a 38.79 ± 0.63a 131.05 ± 5.96a bdl bdl

REE 91.92 ± 4.18b 287.36 ± 6.21b 175.24 ± 3.79b 264.16 ± 5.71c 2.91 ± 0.15a 52.77 ± 5.37b

APEE 0.59 ± 0.17a 28.9 ± 1.85a 39.34 ± 0.99a 143.82 ± 1.47b bdl bdl

LPEE 0.45 ± 0.13a 35.12 ± 1.69a 54.66 ± 2.85c 142.3 ± 1.15b 0.01 ± 0.0b 6.56 ± 1.16a

Kidney

Cont 2.28 ± 0.04a 14.95 ± 0.76a 22.69 ± 0.49a 36.23 ± 0.59a bdl bdl

REE 74.56 ± 1.22b 44.36 ± 2.26c 137.92 ± 7.03c 254.93 ± 8.27c 1.1 ± 0.02 40.32 ± 10.13b

APEE 3.42 ± 1.26a 15.91 ± 1.25a 23.91 ± 1.61a 36.43 ± 1.3b bdl bdl

LPEE 2.30 ± 0.65a 21.26 ± 1.76b 34.29 ± 2.33b 36.563 ± 1.98b bdl 1.83 ± 2.261a

Brain

Cont 0.92 ± 0.02a 3.50 ± 0.16a 4.38 ± 0.22a 11.24 ± 1.89a bdl bdl

REE 20.87 ± 0.45b 19.33 ± 0.31c 43.53 ± 0.71c 71.66 ± 1.17b bdl 19.66 ± 0.42

APEE 0.85 ± 0.06a 4.19 ± 0.42ab 5.72 ± 1.24a 13.10 ± 2.12a bdl bdl

LPEE 0.87 ± 0.14a 5.52 ± 1.64b 13.97 ± 2.21b 11.97 ± 1.38a bdl Bdl

Values are given in mean ± SD

Different alphabets (a, b and c) show significant difference (p \ 0.05) among different means
m FAO (1983): Food and Agricultural Organization
n No limit has been suggested by FAO (1983)
o Control wild fish
p Raw effluent-exposed fish
q Azolla phytoremediated effluent-exposed fish
r Lemna phytoremediated effluent-exposed fish
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In the fish exposed to both of these phytoremediated effluents, Mn concentration in all the tissues decreased

significantly (Table 2). Similarly the concentration of Cu, Zn and Fe also decreased significantly in most of the

tissues of exposed fish to both the phytoremediated effluents (Table 2). Cr was observed in all the raw effluent-

exposed tissues and also in muscles, gills, liver and kidney of fish exposed to LPE (Table 2).

Biochemical investigation in the fish exposed to phytoremediated effluents

Following exposure to raw effluent the concentration of glycogen in the different tissues of fish decreased

significantly (in muscle from 24 ± 1.09 to bdl, in liver from 142 ± 3.07 to 6 ± 0.13, in gills from

11.1 ± 0.18 to bdl, in kidney from 1 ± 0.01 to bdl) (Table 3). However, its concentration increased in the

brain from 26.25 ± 1.30 to 46 ± 2.09. In the fish exposed to APE better recovery of glycogen was observed

(muscles: 9.32 ± 0.58, liver: 24.69 ± 0.65 and gills: 4.98 ± 0.10) (Table 3). Similarly in LPE-exposed fish

improvement in the concentration of glycogen was observed in these tissues (5.98 ± 0.37 in muscles,

15.01 ± 0.40 in liver, 1.62 ± 0.03 in gill (Table 3). In the kidney and skin the amount of the glycogen in the

fish exposed to all the three types of effluents were below the detection limits. However, in the brain of both

the phytoremediated effluent-exposed fish the elevated amount of glycogen continued (40.21 ± 2.23 in APE

and 33.23 ± 1.85 in LPE (Table 3).

In comparison to wild control fish the loss of lipids (mg/g) following raw effluent exposure was highly

significant in all the tissues (in muscles from 7.13 ± 0.32 to 0.2 ± 0.01, in liver from 8.99 ± 0.19 to

Table 3 Glycogen, lipid and cholesterol concentration (mg/g) in different tissues of the fish exposed to raw effluent, APE and

LPE as well as control wild fish (n = 3)

Control wild

fish

REE fishp APEE fishq LPEE fishr

Glycogen

Muscle 24 ± 1.09a Bdl 9.32 ± 0.58b 5.98 ± 0.37c

Liver 142 ± 3.07a 6 ± 0.13d 24.69 ± 0.65b 15.01 ± 0.40c

Gill 11.1 ± 0.18a Bdl 4.98 ± 0.10b 1.62 ± 0.032c

Brain 26.25 ± 1.30d 46 ± 2.09a 40.21 ± 2.24b 33.23 ± 1.9c

Kidney 1 ± 0.02 Bdl Bdl Bdl

Skin Bdl Bdl Bdl Bdl

Lipid

Muscle 7.13 ± 0.32a 0.2 ± 0.009d 1.01 ± 0.05b 0.60 ± 0.04c

Liver 8.99 ± 0.19a 1.42 ± 0.03d 4.63 ± 0.10b 1.23 ± 0.03c

Gill 6.99 ± 0.11a Bdl 2.69 ± 0.04b 2.38 ± 0.70b

Brain 10 ± 0.45a 2 ± 0.09d 4.86 0.22b 1.32 ± 0.07c

Kidney 7.91 ± 0.13a 0.98 ± 0.016d 5.11 0.08b 1.99 ± 0.040a

Skin 0.32 ± 0.007 Bdl Bdl Bdl

Cholesterol

Muscle 3.91 ± 0.18a 1.71 ± 0.08b 1.67 ± 0.03b 1.79 ± 0.04b

Liver 6.33 ± 0.14a 2.4 ± 0.05d 4.42 ± 0.12b 3.16 ± 0.08c

Gill 4.8 ± 0.08a 1.23 ± 0.02c 2.91 ± 0.06b 2.62 ± 0.28b

Brain 7.8 ± 0.35a Bdl 1.68 ± 0.09b Bdl

Kidney 4.1 ± 0.03a 0.82 ± 0.01d 2.02 ± 0.04b 1.81 ± 0.04c

Skin Bdl Bdl Bdl Bdl

Values are given in mean ± SD

Different alphabets (a, b, c and d) show significant difference (p \ 0.05) among different means

Bdl below detectable level
p Raw effluent exposed
q Azolla-phytoremediated effluent exposed
r Lemna-phytoremediated effluent exposed
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1.42 ± 0.03, in gills from 6.99 ± 0.11 to bdl, in brain from 10 ± 0.45 to 2 ± 0.09, in kidney from

7.91 ± 0.13 to 0.98 ± 0.02 and in skin from 0.32 ± 0.01 to bdl). There was marked improvement of this

biomolecule in all tissues of the fish exposed to APE and the concentration of the lipids was 1.01 ± 0.05 in

muscles, 4.63 ± 0.10 in liver, 2.69 ± 0.04 in gills, 4.86 ± 0.22 in brain, 5.11 ± 0.08 in kidney (Table 3).

The recovery of lipids in the tissues of fish exposed to LPE was relatively less and their concentrations were

0.603 ± 0.04 in muscles, 1.23 ± 0.03 in liver, 2.38 ± 0.71 in gills, 1.32 ± 0.07 in brain, 1.99 ± 0.04 in

kidney (Table 3). In the skin, however, there was complete loss of lipids in the fish exposed to all the three

effluent types.

Following exposure to raw effluent the amount of cholesterol (mg/g) in different tissues of fish decreased

substantially (from 3.91 ± 0.18 to 1.71 ± 0.08 in muscles, from 6.33 ± 0.14 to 2.4 ± 0.05 in liver, from

4.8 ± 0.08 to 1.23 ± 0.02 in gills, from 7.8 ± 0.35 to bdl in brain, from 4.1 ± 0.03 to 0.821 ± 0.01 in

kidney) (Table 3). In the skin, however, the cholesterol level was beyond detectable limits in control as well as

in all three effluent-exposed fish groups. The recovery of cholesterol in the muscular tissue in both the

phytoremediated effluent-exposed fish was statistically insignificant in relation to raw effluent exposed fish. In

liver, gills, brain and kidney significant recovery was noticed (4.42 ± 0.15 in liver, 2.91 ± 0.06 in gills,

1.68 ± 0.09 in brain, 2.02 ± 0.04 in kidney of APE exposed fish and 3.16 ± 0.08 in liver, 2.62 ± 0.278 in

gills, bdl in brain, 1.81 ± 0.04 in kidney of LPE exposed fish (Table 3).

When exposed to raw effluent the amount of proteins present in the fish depleted extensively in all the

tissues in comparison to the control ones (Fig. 1) (in muscles from 103.07 ± 1.19 to 16.28 ± 0.61, in liver

from 115.35 ± 2.45 to 40.99 ± 0.89, in gills from 71.56 ± 1.14 to 28.61 ± 0.47, in brain from

116.97 ± 1.63 to 31.88 ± 1.45, in kidney from 102.36 ± 2.48 to 25.81 ± 0.42 and in skin from

24.13 ± 1.34 to 6 ± 0.00). Due to substantial decontamination of APE, its toxic activity also was lowered as

manifested in the recovery of concentration of proteins in various tissues (in muscles 57.02 ± 1.14, in liver

59.48 ± 1.57, in gills 48.56 ± 0.97, in brain 61.23 ± 3.41, in kidney 68.49 ± 1.37, in skin 15 ± .40) from

those of raw effluent-exposed fish (Fig. 1). Similarly concentration of proteins in the LPE-exposed fish also

improved (48.34 ± 3.02 in muscles, 51.64 ± 1.37 in liver, 49.99 ± 1.71 in gills, and 60.6 ± 2.23 in brain,

56.42 ± 1.19 in kidney and 9.29 ± 0.25 in skin (Fig. 1).

PMN effluent exposure caused significant decrease in the AST activity (lmole pyruvate formed/mg/h) in all

the tissues excepting skin (7.87 ± 0.13 to 1.02 ± 0.014 in muscle, 18.62 ± 0.95 to 3.43 ± 0.15 in liver,

5 ± 0.08 to 1.16 ± 0.01 in gills, 8.99 ± 0.07 to 2.08 ± 0.02 in brain, 15.91 ± 0.39 to 1.37 ± 0.02 in kidney

Fig. 1 Protein concentration in different tissues of the fish exposed to raw effluent, APE and LPE as well as control wild fish.

REE raw effluent exposed, APEE Azolla-phytoremediated effluent exposed, LPEE Lemna-phytoremediated effluent exposed

Different alphabets (a, b and c) show significant difference (p \ 0.05) among different means
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(Table 4). Significant recovery in the enzyme activity in all the five tissues was noticed following exposure to

both the decontaminated effluents. Following phytoremediation activity of the enzyme improved in liver

(10.24 ± 0.27 in APE and 7.16 ± 0.19 in LPE), kidneys (10.98 ± 0.22 in APE and 6.72 ± 0.13 in LPE) and

brain (6.18 ± 0.34 in APE and 2.22 ± 0.12 in LPE), in the muscles (4.56 ± 0.28 in APE and 4.22 ± 0.54 in

LPE) and gills (2.1 ± 0.04 in APE and 2.03 ± 0.18 in LPE) (Table 4). In the skin, however, activity of this

enzyme was neither demonstrated in the control nor in the phytoremediated effluent-exposed fish tissues.

However, the activity of the enzyme in none of the tissues of the phytoremediated effluent-exposed fish

reached the level of untreated control fish. The activity of the enzyme in the LPE showed similar pattern of

fluctuation in different tissues even though its activity was comparatively less than APE exposed fish.

Like AST the activity (lmole pyruvate formed/mg/h) of the ALT also decreased in the raw effluent treated

fish tissues (11.54 ± 0.173 to 2.53 ± 0.03 in muscles, 21.98 ± 0.47 to 3.81 ± 0.08 in liver, 11.72 ± 0.20 to

0.823 ± 0.01 in gills, 12.69 ± 0.11 to 7.91 ± 0.06 in brain and 4.81 ± 020 to 0.132 ± 0.002 in kidney)

(Table 4). In both the phytoremediated exposed fish the enzyme activity recovered significantly in the muscle

(5.63 ± 0.35 in APE and 5.23 ± 0.23 in LPE), liver (16.28 ± 0.43 in APE and 10.93 ± 0.29 in LPE), gills

(8.67 ± 0.17 in APE and 3.338 ± 0.07 in LPE) and kidneys (1.68 ± 0.03 in APE and 0.612 ± 0.01 in LPE)

(Table 4). Recovery in the ALT activity in the brain (9.89 ± 0.55 in APE and 10.28 ± 0.57 in LPE) of the

phytoremediated effluent-exposed fish was not so remarkable. Excepting brain the efficacy of Azolla

decontamination was better in rest of the four tissues as illustrated by improved recovery in this enzyme

activity in these tissues.

The decrease in the ALP activity (lmole PNP formed/mg/h) in the different tissues was also extensive

following exposure of the wild control fish to raw PMN effluent (0.53 ± 0.00 to 0.196 ± 0.003 in muscles,

1.294 ± 0.02 to 0.564 ± 0.01 in liver, 0.712 ± 0.01 to 0.263 ± 0.004 in gills, 0.970 ± 0.01 to 0.239 ± 0.01

in brain and 0.892 ± 0.01 to 0.599 ± 0.009 in kidney) (Table 4). In this case, also the recovery in the enzyme

Table 4 AST, ALT and ALP activities in different tissues of the fish exposed to raw effluent, APE and LPE as well as control

wild fish (n = 3)

Control wild

fish

REE fishp APEE fishq LPEE fishr

AST

Muscle 7.87 ± 0.13a 1.02 ± 0.01b 4.56 ± 0.28c 4.22 ± 0.53c

Liver 18.62 ± 0.95a 3.43 ± 0.16d 10.24 ± 0.27b 7.16 ± 0.19c

Gill 5 ± 0.08a 1.37 ± 0.02c 2.1 ± 0.04b 2.03 ± 0.17b

Brain 8.99 ± 0.07a 2.08 ± 0.02d 6.18 ± 0.34b 2.22 ± 0.12c

Kidney 15.91 ± 0.34a 1.16 ± 0.02d 10.98 ± 0.22b 6.72 ± 0.13c

ALT

Muscle 11.54 ± 0.17a 2.53 ± 0.04b 5.63 ± 0.35c 5.24 ± 0.23c

Liver 21.98 ± 0.47a 3.81 ± 0.08d 16.28 ± 0.43b 10.93 ± 0.29c

Gill 11.72 ± 0.20a 0.82 ± 0.01d 8.67 ± 0.17b 3.34 ± 0.07c

Brain 12.69 ± 0.11a 7.91 ± 0.06c 9.89 ± 0.55b 10.28 ± 0.57b

Kidney 4.81 ± 0.10a 0.13 ± 0.002d 1.68 ± 0.03b 0.61 ± 0.01c

ALP

Muscle 0.53 ± 0a 0.20 ± 0.003c 0.39 ± 0.02b 0.36 ± 0.02b

Liver 1.29 ± 0.02a 0.56 ± 0.01d 0.96 ± 0.02b 0.73 ± 0.02c

Gill 0.71 ± 0.01a 0.26 ± 0.004c 0.53 ± 0.01b 0.53 ± 0.05b

Brain 0.97 ± 0.01a 0.24 ± 0.01d 0.76 ± 0.04b 0.54 ± 0.03c

Kidney 0.89 ± 0.01a 0.60 ± 0.009c 0.73 ± 0.01b 0.71 ± 0.01b

Values are given in mean ± SD

Different alphabets (a, b, c and d) show significant difference (p \ 0.05) among different means
p Raw effluent exposed
q Azolla-phytoremediated effluent exposed
r Lemna-phytoremediated effluent exposed
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activity was more following APE exposure (0.389 ± 0.02, 0.961 ± 0.02, 0.532 ± 0.01, 0.765 ± 0.04 and

0.728 ± 0.01 in muscles, liver, gills, brain and kidney, respectively) than LPE exposure (0.364 ± 0.02 in

muscles, 0.729 ± 0.01 in liver, 0.53 ± 0.04 in gills, 0.539 ± 0.03 and 0.713 ± 0.01 in kidney) (Table 4).

However, the difference was more pronounced in the liver and brain. In the skin the enzyme activity could not

be identified in any of the control as well as experimental tissues.

Discussion

Exposure of fish to the raw PMN effluent caused accumulation of significant amount of different metals (Fe,

Zn, Cu, Cr, Mn and Pb) in various tissues. Bioaccumulation of metals in the different tissues of the fish

exposed to various waste water has also been reported by Vinodhini and Narayanan (2008), Dube et al. (2005)

and Zyadah and Abdel-Bakey (2000). Recently, Vaseem and Banerjee (2012) successfully decontaminated

this PMN effluent by phytoremediation technique. Decontamination of metals by phytoremediation is

extensively been used (Rai 2008, 2010). To validate and quantify the degree of detoxification by phyto-

remediation, both the phytoremediated effluents (LPE and APE) were subjected to bioassay analyses using fish

tissues as bioindicator.

Concentration of several metals in most of the tissues of both the phytoremediated effluent-exposed fish

reached quite nearer to the levels of the control (wild) fish. Accumulation of Mn, Cu, Zn and Fe in all the

tissues of both the phytoremediated effluent-exposed fish decreased significantly and their concentration

reached nearer to the levels of the untreated control fish (Table 2). Significantly lowered levels of all these

metals in both of the phytoremediated effluents exposed fish confirm the effectiveness of phytoremediation in

decontamination of Mn, Fe, Cu and Zn by Azolla pinnata and Lemna minor. In APE-exposed fish accumu-

lation of Cr was not detected in any tissues of the fish. It might be due to almost complete decontamination of

this metal from the effluent by phytoremediation. But in case of LPE-exposed fish, significant accumulation of

Cr was noticed in most of the tissues (Table 2). This indicates incomplete detoxification of Cr from the

effluent by phytoremediation. Analysis of the Table 2 also indicates that the level of metal accumulation in the

tissues of LPE exposed fish was higher than those of APE exposed ones. This also points towards the better

efficacy of phytoremediation by Azolla pinnata. Accumulation of many metals in the tissues of phytoreme-

diated effluent-exposed fish failed to reach the levels of untreated control (Table 2); however, the accumu-

lation levels reached to the safe limits suggested by FAO.

Although the metal load decreased in the phytoremediated effluents, the toxic impact of the decontaminated

effluents in the fish tissues continued. This was manifested by the decreased concentration of various bio-

molecules of the tissues in the fish exposed to the phytoremediated effluents and the reasons for continued

toxicity of phytoremediated effluents might also be due to: (1) presence of the non-metallic toxicants and (2)

bioconcentration of the metals by the fish tissues due to prolonged exposure even though under greatly

lowered metallic stress. Hence fish raised in the phytoremediated effluent still may not be safe for

consumption

Significant decrease in the concentration of different biomolecules was noticed in the raw PMN effluent-

exposed fish. Exposure of fish to phytoremediated effluent caused significant improvement in the various

biomolecules. Improvement in the concentration of protein, glycogen, lipids, DNA and RNA in the fish

Heteropneustes fossilis exposed to phytoremediated coal mine effluent has also been reported by Bharti and

Banerjee (2013). In the present study the concentration of the glycogen in the phytoremediated effluent-

exposed fish tissues increased greatly from that of raw effluent exposed ones. However, the concentration of

this carbohydrate moiety continued to be below the levels of untreated (wild) fish tissues. This might perhaps

be due to continued utilisation of the glycogen molecules to meet additional energy requirement for combating

the toxicity of the existing levels of the metals (Table 3) (Singh and Banerjee 2009 and Lin et al. 2011).

Due to decrease in severity of toxicity following phytoremediation by the macrophytes the total lipid

(Table 3) and cholesterol concentrations (Table 3) increased significantly in comparison to the raw effluent

exposed tissues. This might perhaps be due to lowered requirement of energy with consequent decreased

utilisation of these biofuels. However, the lipid concentration did not reach the level of control ones. This

might perhaps be due to incomplete detoxification of the effluent by both the macrophytes which caused

continuation of additional requirement of energy of the fish even though in smaller amount.
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The increase in protein level in several organ systems of both the phytoremediated effluent-exposed fish

also suggests partial improvement in the water quality (Fig. 1) in which the fish were retained.

The activities of the three enzymes AST, ALT and ALP also decreased substantially in different tissues of

the raw effluent exposed fish. In the phytoremediated effluent-exposed ones, the activities of these enzymes in

many tissues increased (Table 4) substantially suggesting the improvement in the quality of the effluent due to

bioremediation. However, due to incomplete detoxification by the macrophytes the activities of these enzymes

continued to remain below the levels of untreated fish.

Conclusion

Due to significant depletion in metal concentration from the APE and LPE, the toxic stress of the effluent

decreased causing significant reduction in metal accumulation and recovery of the various macromolecules in

the different tissue systems of the fish. Recovery in amounts of different biomolecules and depletion in metal

load were higher in APE exposed fish. However, due to incomplete phytoremediation of effluents, the metals

continued to accumulate in the fish tissues. This was reflected in the quantitative alteration of various

biomolecules and bioaccumulation of the toxic metals even in the tissues of APE and LPE-exposed fish.
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