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Abstract The present study was carried out to investigate the effect of sublethal zinc (Zn) concentrations on

growth performance, biochemical variables, and Zn residues in various organs of Nile tilapia, Oreochromis

niloticus (L.). Fish (25 ± 0.5 g) were exposed to 0.0, 3.5, or 7.0 mg Zn L-1 for 1 or 6 weeks. Fish growth was

significantly reduced with increasing Zn concentrations. However, fish exposed to 7.0 mg Zn L-1 grew less

quickly than those of the control group. Likewise, best feed intake and feed conversion ratio were obtained at

the control group. Furthermore, glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT),

creatinine, and cortisol increased significantly with increasing Zn concentrations and exposure time, with

maximal values in the 7.0 mg Zn L-1 treatment after 6 weeks. Meanwhile, highest values of serum protein

and lipids were obtained in the control fish reared for 6 week, whereas their lowest values were observed in

fish exposed to 7.0 mg Zn L-1 for 1 week. There was no significant change in whole-body moisture content of

fish due to Zn exposure, although crude protein and total lipid contents decreased significantly with increasing

Zn concentrations. In addition, Zn exposure increased total ash contents and Zn residues in different inves-

tigated fish organs. The Zn concentrations in all fish organs were time-dependant and the Zn residues after

1 week were found to follow the order of gills[ liver[ kidney[muscle, meanwhile after 6 weeks it fol-

lowed the order of liver[ kidney[ gill[muscle. The present findings revealed that liver and kidney tissues

are the prime sites of Zn bioaccumulation, while Zn load in the muscle was for low as compared to other

organs.

Keywords Nile tilapia � Fish performance � Biochemical variables � Zn toxicity � Zn bioaccumulation � Fish
organs

Introduction

Heavy metals pollution is a major ecological concern due to its high persistence in the environment. The

agricultural and industrial activities are the main source of heavy metal pollution, which adversely affect the

aquatic ecosystem (Rashed 2001; Yilmaz 2003; Khare and Singh 2002). Although aquatic ecosystems are
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equipped with a variety of physico-chemical and biological mechanisms to eliminate or reduce adverse effects

of toxic substances, toxicants may evoke changes in development, growth, reproduction and behavior, or may

cause death of freshwater organisms (see Eisler 1993).

Zinc (Zn) is one of the most important essential trace elements involved in animal growth and the most

widely used metal cofactor of many enzymes involved in protein, nucleic acid, carbohydrate, and lipid

metabolism (Carpene et al. 2003; Sun et al. 2005). Zinc in certain concentration is desirable for fish growth but

its over accumulation is hazardous to exposed fish (Senthil Murugan et al. 2008). Zinc is one of the most

common contaminants in aquatic systems and is associated with urban runoff, soil erosion, industrial dis-

charges, pharmaceuticals, pesticides and a variety of other activities and sources (Schmitt 2004; Bowen et al.

2006). The danger of Zn is aggravated by its almost indefinite persistence in the environment because it cannot

be destroyed biologically and is only transformed from one oxidation state or organic complex to another

(Everall et al. 1989).

Fish are an integral component of the aquatic ecosystems. In addition to being a source of protein to

humans, they play important roles as bioindicators of trace element pollution (Rashed 2001). For this reason,

the utility of fish for assessing environmental conditions in aquatic ecosystems has gained prominence in

recent years (Yilmaz 2003; Budambula and Mwachiro 2006; Adeniyi et al. 2008; Palaniappan et al. 2010).

Due to the deleterious effects of Zn on aquatic ecosystems, it is necessary to monitor its potential impact on

fish performance and health.

Nile tilapia, Oreochromis niloticus (L.) is commonly found in a wide range of freshwater ecosystems that

may be polluted by Zn. Zinc concentrations in some Egyptian lakes are ranged from 0.004 to 0.46 mg L-1

(Saeed and Shaker 2008) and in some heavy-polluted lakes, Zn concentration reached 7.94 mg L-1 (Abdel-

Baky et al. 1998). Hence, the present study was aimed to investigate effect of water-born Zn toxicity on

growth performance, biochemical variables, and whole-body chemical composition of Nile tilapia. Zinc

bioaccumulation and distribution in gill, liver, muscles, and whole-fish body were also investigated.

Materials and methods

Experimental procedures

Healthy Nile tilapia (25 ± 0.5 g) were collected from nursery ponds, Central Laboratory for Aquaculture

Research, Abbassa, Abo-Hammad, Sharqia, Egypt. Fish were kept for 2 weeks in an indoor fiberglass tank for

acclimation during which fish were fed a commercial diet containing 25 % crude protein (CP) up to satiation

twice a day. The authors declare that this experiment followed the ethical guidance for animal research.

The metal zinc in the form of zinc sulfate (ZnSO4�7H2O-Analar grade, Merck) was used in the present

study. A preliminary study was conducted to calculate the 96-h LC50 of Zn for Nile tilapia according to

Behrens–Karber’s method (Klassen 1991) and it was 70.0 mg L-1 (Abdel-Tawwab et al. 2011). The exper-

iment was carried out in 12 100-L glass aquaria and each aquarium was stocked with 10 fish and supplied by

air via air-stone using air pump. Fish were exposed to 0.0 (control), 3.5, or 7.0 mg Zn L-1 over 1 or 6 weeks

where each treatment was represented by four replicates. During the experimental running, fish were fed a

supplementary diet (25 % CP) up to satiation twice a day. Fish excreta with a half of the water in each

aquarium were siphoned every day and replaced by dechlorinated tap-water containing the same Zn con-

centration. After 1 and 6 weeks of Zn post-exposure, all fish from two aquaria from each group were collected,

counted, and weighed. Then, five fish per aquarium were dissected and different tissues of gill, liver, kidney,

and muscles were taken separately. These tissues were washed in redistilled water and preserved at -20 �C
until analysis.

Analysis of water physico-chemical parameters

Water samples for chemical parameters were monitored weekly during the experimental period. Dissolved

oxygen and temperature were measured daily on site with an oxygen meter (YSI model 58, Yellow Spring

Instrument Co., Yellow Springs, Ohio, USA). Unionized ammonia was measured using Multiparameter Ion

Analyzer (HANNA Instruments, Rhodes Island, USA). The pH value was measured using a pH-meter (Digital
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Mini-pH-Meter, model 55, Fisher Scientific, Denver, USA). The electric conductivity of aquaria water was

measured by a conductivity-meter (YSI model 33, Yellow Spring Instrument Co., Yellow Springs, Ohio,

USA). Total alkalinity and total hardness were measured by titration as described by Boyd (1984).

Growth parameters and feed utilization

Growth performance was determined and feed utilization was calculated as following:

Weight gain ¼ W2�W1;

Specific growth rate SGRð Þ ¼ 100 Ln W2 gð Þ� Ln W1 gð Þ½ �=T ;

where W2 is final weight, W1 is initial weight, and T is the experimental period (day);

Feed conversion ratio (FCR) = feed intake/weight gain.

Biochemical measurements

After the 1st or the 6th week post-exposure, fish were not fed during the 24 h immediately prior to blood

sampling. Five fish from each aquarium were anaesthetized with buffered tricaine methane sulfonate (30 mg

L-1) and blood was collected from the caudal vasculature. The collected blood was centrifuged at 50009g for

15 min at room temperature. The collected serum was stored at -20 �C for further assays. Glucose total

protein, total lipids, and creatinine were calorimetrically determined according to Trinder (1969), Henry

(1964), Joseph et al. (1972), and Henry (1974), respectively. Activities of aspartate aminotransferase (AST)

and alanine aminotransferase (ALT) in fish serum were determined colorimetrically according to Reitman and

Frankel (1957). Serum cortisol levels were determined using electrochemiluminometric assay by Elecsys and

Cobas e 411 Immunoassay Analyzer (Roche Diagnostics, Indianapolis, IN 46256 USA). The test kit was

prepared in accordance with the method described by Chiu et al. (2003).

Proximate chemical analyses

The proximate chemical analyses of the whole-fish body from each treatment were carried out according to the

standard methods of AOAC (Helrich 1990) for moisture, crude protein, total lipids, and total ash. Moisture

content was estimated by drying the samples at 85 �C in a heat oven (GCA, model 18EM, Precision Scientific

group, Chicago, Illinois, USA) for 48 h. Nitrogen content was measured using a microkjeldahl apparatus

(Labconco, Labconco Corporation, Kansas, Missouri, USA) and crude protein was estimated by multiplying

nitrogen content by 6.25. Lipid content was determined by ether extraction in multi-unit extraction Soxhlet

apparatus (Lab-Line Instruments, Inc., Melrose Park, Illinois, USA) for 16 h and total ash was determined by

combusting dry samples in a muffle furnace (Thermolyne Corporation, Dubuque, Iowa, USA) at 550 �C for

6 h.

Zinc residue

For measuring Zn residues in water, 1-L water sample from each aquarium was filtered via 0.8 lm Millipore

acetylcellulose filter paper (Millipore, Bedford, MA, USA), digested with 10 ml concentrated H2SO4 on hot

plate at 70 �C, concentrated to 50 ml, and transferred to a volumetric flask. Samples were adjusted up to

100 ml with redistilled water.

For measuring Zn residues in the investigated fish organs, a gram from each organ was placed in crucible

and ashed in a muffle furnace (Thermolyne Corporation, Dubuque, Iowa, USA) for 6 h. The whole-fish body

was oven-dried at 85 �C until constant weight and 1.0 g dry weight was ashed in a muffle furnace for 6 h. Ash

was digested with 5 ml concentrated H2SO4 and gradually kept at 130 �C on hot plate until complete dryness.

Then, the digests were diluted with 2 N HCl to a constant volume. The Zn concentration was determined with

an atomic absorption spectrophotometer (Thermo 6600, Thermo Electron Corporation, Cambridge, UK),

which was calibrated using Zn standard solutions.
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Statistical analysis

The obtained data were subjected to two-way ANOVA, to test effects of Zn concentration and exposure period as

the two factors. Duncan’s Multiple Range test was used as a post hoc test to compare between means at P B 0.05.

The software SPSS, version 15 (SPSS, Richmond, Virginia, USA) was used as described by Dytham (1999).

Results and discussion

No significant changes were observed in water temperature, dissolved oxygen, pH, EC, total alkalinity, and

total hardness as a result of either increased Zn concentration, exposure time, and/or their interaction

(P[ 0.05; Table 1). The concentration of unionized ammonia was increased significantly with increasing Zn

concentration, from 0.71 mg L-1 in the control aquaria to 0.98 mg L-1 in the 7.0 mg Zn L-1 treatment after

6 weeks (Table 1), suggesting that ammonia excretion may be induced by Zn stress, e.g., as noted by

Wendelaar Bonga (1997), who reported that, during stress, elevation of cortisol stimulated the production of

ammonia. Similar results found increases in ammonia concentrations due to copper toxicity in common carp

(De Boeck et al. 2007; Kunwar et al. 2009) and due to Zn toxicity in Nile tilapia (Abdel-Tawwab et al. 2012).

The water-born Zn exposure regimes employed in the present study were well tolerated by Nile tilapia as

portrayed by the high fish survival (96.7–100.0 %). Fish performance and feed utilization, however, were sig-

nificantly affected by Zn concentration, exposure time, and their interaction (P\ 0.05; Table 2). For instance,

fish growth was significantly reduced with increasing Zn concentration, e.g., the fish exposed to 7.0 mg Zn L-1

for 6 weeks (32.2 g) grew less quickly than that the control group (44.7 g). Likewise, feed intake decreased, while

FCR increased significantly with increasing Zn concentration (P\ 0.05; Table 2). The best feed intake and FCR

were obtained at the control group (32.8 g feed fish-1 and 1.68, respectively). One hypothesis for these obser-

vations is that exposure to elevated Zn concentrations leads to reduced fish appetite, in turn resulting in reduced

feed intake and growth. An alternative hypothesis is that due to the reduced feed intake, the energy requirements

were met via the decomposition of the storage-deposited nutrients (Abdel-Tawwab et al. 2006). This latter

hypothesis is supported by a significant decrease in total lipids deposition observed in the current study, and

consistent with Shukla and Pandey (1986), who reported significant decreases in growth of Channa punctatus,

when exposed to 12 mg L-1 zinc sulfate. Also, Abdel-Tawwab et al. (2012) and (2013) found significant

decreases in the growth of Nile tilapia and common carp respectively when exposed to Zn toxicity.

All the biochemical parametersmonitored at 1 or 6 weekswere significantly positively or negatively affected by

the Zn treatments (P\ 0.05; Table 3). For instance, glucose, AST, ALT, creatinine, and cortisol increased sig-

nificantly (P\ 0.05) with increasing Zn concentration and exposure time, with maximal values of glucose, AST,

ALT, creatinine, and cortisol observed in the 7.0 mgZnL-1 treatment after 6 weeks (143.8 mgdL-1, 81.4, 59.2 IU

dL-1, 0.79 mg dL-1, and 9.39 lg dL-1, respectively; Table 3). On the other hand, serum protein and lipid

concentrations decreased significantlywith increasingZn concentration. Highest values of serum protein and lipids

(7.93 and 6.85 gdL-1, respectively)were obtained in the control fish reared for 6 week,whereas lowest valueswere

observed in fish exposed to 7.0 mgZnL-1 for 1 week (1.80 and 2.31 g dL-1, respectively; Table 3). The increased

blood glucose and cortisol concentrations due to Zn exposure suggests that the Zn caused stress. The primary

response against stress involves the increases in plasma cortisol (Barton and Iwama 1991; Barton 2002). This

hormone induces secondary stress responses, characterized by increased glucose levels, mobilizing glucose to

tissues for homeostasis to cope with energy demanding processes of restoration (Wendelaar Bonga 1997; Barton

et al. 2002). Stress may thus have resulted in a high consumption of energy reserves, and this reallocation of

metabolic energymayhave negatively interferedwith other physiological processes, viz. growth, reproduction, and

immunity etc. (Barton and Iwama 1991; Wendelaar Bonga 1997; Pickering 1998; Mommsen et al. 1999).

ALT and AST activities are frequently used in the diagnosis of damage caused by pollutants in liver tissues

(Coppo et al. 2003; Chen et al. 2004). The increased AST and ALT activities observed in this study may be

indicative of liver damage, which in turn may have led to the leakage of these enzymes from liver cytosol into

the blood stream. This is consistent with Firat and Kargin (2010) who found increases in ALT and AST

activity in Nile tilapia serum caused by the individual and combined effects of exposure to Zn and Cd. Abdel-

Tawwab et al. (2012) and (2013) found significant increases in ALT and AST activity in Nile tilapia and

common carp, respectively, when exposed to different Zn concentrations.

123

200 Int Aquat Res (2016) 8:197–206



T
a
b
le

1
C
h
an
g
es

in
aq
u
ar
ia
’s

w
at
er

p
h
y
si
co
-c
h
em

ic
al

p
ar
am

et
er
s
(m

ea
n
±

S
E
)
st
o
ck
ed

b
y
N
il
e
ti
la
p
ia

ex
p
o
se
d
to

d
if
fe
re
n
t
w
at
er
-b
o
rn

Z
n
co
n
ce
n
tr
at
io
n
s
fo
r
d
if
fe
re
n
t
p
er
io
d
s

Z
n
co
n
ce
n
tr
at
io
n
s

(m
g
L
-
1
)

T
em

p
er
at
u
re

(o
C
)

D
is
so
lv
ed

O
2
(m

g
/L
)

p
H

C
o
n
d
u
ct
iv
it
y

(l
S
/c
m
)

N
H
3
(m

g
/L
)

T
o
ta
l
al
k
al
in
it
y

(m
g
/L
)

T
o
ta
l
h
ar
d
n
es
s

(m
g
/L
)

W
at
er
-b
o
rn
e
Z
n

(m
g
/L
)

A
ft
er

1
w
ee
k

0
.0

2
4
.9

±
0
.1
3

4
.9

±
0
.4

7
.5
2
±

0
.0
6

4
2
2
.3

±
1
.7

0
.7
1
±

0
.2
1
c

1
9
3
.3

±
6
.7

2
2
8
.0

±
6
.1

0
.4
3
±

0
.1
2

3
.5

2
5
.0

±
0
.1
1

4
.8

±
0
.3

7
.4
6
±

0
.0
2

4
2
1
.0

±
4
.1

0
.8
2
±

0
.1
5
b
c

2
0
0
.0

±
5
.0

2
3
1
.3

±
5
.9

3
.6
3
±

0
.0
9

7
.0

2
4
.8

±
0
.1
3

4
.9

±
0
.3

7
.4
8
±

0
.0
4

4
2
0
.9

±
3
.1

0
.8
8
±

0
.1
8
b

1
9
1
.7

±
6
.0

2
3
0
.0

±
8
.1

7
.7
2
±

0
.1
6

A
ft
er

6
w
ee
k
s

0
.0

2
4
.4

±
0
.3
1

5
.3

±
0
.2

7
.5
2
±

0
.0
6

4
1
5
.2

±
2
.6

0
.7
9
±

0
.0
8
c

1
9
0
.0

±
7
.6

2
3
1
.3

±
5
.9

0
.4
1
±

0
.1
4

3
.5

2
4
.5

±
0
.2
3

5
.2

±
0
.3

7
.4
6
±

0
.0
7

4
2
0
.2

±
2
.6

0
.8
5
±

0
.1
9
b

1
9
6
.7

±
7
.3

2
2
8
.0

±
6
.1

3
.5
9
±

0
.1
8

7
.0

2
4
.6

±
0
.1
8

4
.9

±
0
.3

7
.4
1
±

0
.0
3

4
2
1
.9

±
2
.5

0
.9
8
±

0
.1
0
a

1
9
0
.0

±
7
.6

2
3
6
.3

±
8
.2

7
.6
3
±

0
.1
8

T
w
o
-w

ay
A
N
O
V
A

P
v
al
u
e

Z
n
co
n
ce
n
tr
at
io
n

0
.7
1
7

0
.7
2
9

0
.2
2
4

0
.6
4
9

0
.0
1
3

0
.2
9
8

0
.8
4
0

0
.0
0
1

E
x
p
o
su
re

p
er
io
d
(E
P
)

0
.7
0
7

0
.3
2
0

0
.5
4
7

0
.3
4
9

0
.0
4
4

0
.0
6
7

0
.7
1
1

0
.6
6
7

Z
n
co
n
c.

9
E
P

0
.9
0
0

0
.8
3
4

0
.6
8
7

0
.3
6
8

0
.9
6
0

0
.1
3
0

0
.7
7
2

0
.8
8
6

M
ea
n
s
h
av
in
g
th
e
sa
m
e
le
tt
er

in
th
e
sa
m
e
co
lu
m
n
ar
e
n
o
t
si
g
n
ifi
ca
n
tl
y
d
if
fe
re
n
t
at

P
\

0
.0
5

123

Int Aquat Res (2016) 8:197–206 201



T
a
b
le

2
G
ro
w
th

p
er
fo
rm

an
ce

(m
ea
n
±

S
E
)
o
f
N
il
e
ti
la
p
ia

ex
p
o
se
d
to

d
if
fe
re
n
t
w
at
er
-b
o
rn

Z
n
co
n
ce
n
tr
at
io
n
s
fo
r
d
if
fe
re
n
t
p
er
io
d
s

Z
n
co
n
ce
n
tr
at
io
n
s
(m

g
L
-
1
)

In
it
ia
l
w
ei
g
h
t
(g
)

F
in
al

w
ei
g
h
t
(g
)

W
ei
g
h
t
g
ai
n
(g
)

S
G
R
(%

/d
ay
)

F
ee
d
in
ta
k
e

(g
fe
ed
/fi
sh
)

F
C
R

S
u
rv
iv
al

(%
)

A
ft
er

1
w
ee
k

0
.0

2
5
.3

±
0
.0
7

2
9
.5

±
0
.7
6
d

4
.3

±
0
.8
1
d

2
.2
5
0
±

0
.3
9
5
a

4
.1

±
0
.0
3
d

0
.9
5
±

0
.2
3
d

1
0
0
.0

±
0
.0

3
.5

2
5
.2

±
0
.0
7

2
7
.6

±
0
.1
5
d
e

2
.4

±
0
.1
7
d
e

1
.3
0
0
±

0
.0
9
2
b

3
.2

±
0
.1
4
d
e

1
.3
3
±

0
.1
6
c

9
6
.7

±
3
.3

7
.0

2
5
.3

±
0
.0
6

2
6
.1

±
0
.1
7
d

1
.0

±
0
.0
8
e

0
.5
5
8
±

0
.0
4
3
d

2
.8

±
0
.3
2
e

2
.8
0
±

0
.4
7
b

9
6
.7

±
3
.3

A
ft
er

6
w
ee
k
s

0
.0

2
5
.2

±
0
.0
9

4
4
.7

±
0
.8
6
a

1
9
.5

±
0
.8
9
a

1
.3
6
5
±

0
.0
4
9
b

3
2
.8

±
0
.5
5
a

1
.6
8
±

0
.0
6
c

1
0
0
.0

±
0
.0

3
.5

2
5
.3

±
0
.0
3

3
7
.5

±
1
.0
0
b

1
2
.3

±
1
.0
3
b

0
.9
4
6
±

0
.0
6
6
c

2
5
.6

±
0
.5
2
b

2
.0
8
±

0
.1
7
b

9
6
.6

±
3
.3

7
.0

2
5
.2

±
0
.0
7

3
2
.2

±
0
.1
5
c

7
.1

±
0
.2
2
c

0
.5
9
3
±

0
.0
1
6
d

2
3
.0

±
0
.1
2
c

3
.2
4
±

0
.1
1
a

9
6
.6

±
3
.3

T
w
o
-w

ay
A
N
O
V
A

P
v
al
u
e

Z
n
co
n
ce
n
tr
at
io
n

0
.9
5
8

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
7
5

E
x
p
o
su
re

p
er
io
d
(E
P
)

0
.6
8
4

0
.0
0
1

0
.0
0
1

0
.0
2
2

0
.0
0
1

0
.0
4
8

0
.0
9
4

Z
n
co
n
c.

9
E
P

0
.7
4
3

0
.0
0
1

0
.0
0
1

0
.0
4
2

0
.0
0
1

0
.0
0
3

0
.8
2
1

M
ea
n
s
h
av
in
g
th
e
sa
m
e
le
tt
er

in
th
e
sa
m
e
co
lu
m
n
ar
e
n
o
t
si
g
n
ifi
ca
n
tl
y
d
if
fe
re
n
t
at

P
\

0
.0
5

123

202 Int Aquat Res (2016) 8:197–206



T
a
b
le

3
C
h
an
g
es

in
b
io
ch
em

ic
al

v
ar
ia
b
le
s
(m

ea
n
±

S
E
)
o
f
N
il
e
ti
la
p
ia

ex
p
o
se
d
to

d
if
fe
re
n
t
w
at
er
-b
o
rn

Z
n
co
n
ce
n
tr
at
io
n
s
fo
r
d
if
fe
re
n
t
p
er
io
d
s

Z
n
co
n
ce
n
tr
at
io
n
s
(m

g
L
-
1
)

G
lu
co
se

(m
g
/d
L
)

P
ro
te
in

(g
/d
L
)

L
ip
id
s
(g
/d
L
)

A
S
T
(I
U
/d
L
)

A
L
T
(I
U
/d
L
)

C
re
at
in
in
e
(m

g
/d
L
)

C
o
rt
is
o
l
(l
g
/d
L
)

A
ft
er

1
w
ee
k

0
.0

8
2
.8

±
3
.9

d
2
.9
4
±

0
.1
5
6
c

4
.0
7
±

0
.2
6
4
b

1
7
.1
0
±

1
.1
5
9
e

2
3
.0
3
±

1
.0
8
4
d

0
.2
1
±

0
.0
1
7
d

0
.8
9
±

0
.1
0
2
e

3
.5

8
8
.3

±
2
.2

d
1
.9
9
±

0
.0
5
2
d

2
.5
9
±

0
.1
2
1
c

3
4
.0
0
±

0
.8
5
4
d

2
8
.2
0
±

2
.1
1
7
d

0
.3
2
±

0
.0
2
3
c

1
.4
6
±

0
.1
7
1
d
e

7
.0

1
1
1
.3

±
2
.8

c
1
.8
0
±

0
.0
8
8
d

2
.3
1
±

0
.1
6
8
c

4
1
.2
0
±

1
.3
3
2
cd

3
5
.0
0
±

0
.5
7
7
c

0
.5
1
±

0
.0
4
1
b

2
.5
6
±

0
.1
6
9
c

A
ft
er

6
w
ee
k
s

0
.0

8
3
.0

±
2
.5

d
7
.9
3
±

0
.2
6
7
a

6
.8
5
±

0
.5
4
1
a

3
8
.3
3
±

1
.3
7
8
c

4
0
.8
0
±

3
.8
5
9
c

0
.3
4
±

0
.0
5
8
c

2
.2
1
±

0
.1
5
9
cd

3
.5

1
3
0
.3

±
2
.1

b
5
.8
0
±

0
.5
7
7
b

4
.7
9
±

0
.2
5
8
b

6
0
.7
0
±

1
.9
0
9
b

5
1
.7
7
±

2
.1
1
3
b

0
.4
8
±

0
.0
1
5
b

4
.6
6
±

0
.4
3
3
b

7
.0

1
4
3
.8

±
3
.4

a
2
.9
3
±

0
.3
5
3
c

4
.3
7
±

0
.2
3
1
b

8
1
.3
7
±

4
.4
4
6
a

5
9
.2
0
±

1
.6
0
7
a

0
.7
9
±

0
.0
4
9
a

9
.3
9
±

0
.4
8
6
a

T
w
o
-w

ay
A
N
O
V
A

P
v
al
u
e

Z
n
co
n
ce
n
tr
at
io
n

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

E
x
p
o
su
re

p
er
io
d
(E
P
)

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

0
.0
0
1

Z
n
co
n
c.

9
E
P

0
.0
0
1

0
.0
0
1

0
.0
3
6

0
.0
2
6

0
.0
0
3

0
.0
4
5

0
.0
0
1

M
ea
n
s
h
av
in
g
th
e
sa
m
e
le
tt
er

in
th
e
sa
m
e
co
lu
m
n
ar
e
n
o
t
si
g
n
ifi
ca
n
tl
y
d
if
fe
re
n
t
at

P
\

0
.0
5

123

Int Aquat Res (2016) 8:197–206 203



Serum creatinine is a traditional screening index for kidney function and renal structural integrity. The

increased creatinine indicates that Zn toxicity had a marked effect on kidney function, perhaps due to the

action of water-born Zn on glomeruli filtration rate and/or pathological changes to the kidney resulting in

dysfunction. Similar results were obtained by Abdel-Tawwab et al. (2012) and (2013) who found creatinine

increases in Nile tilapia and common carp, respectively, due to Zn toxicity.

There was no significant change in whole-body moisture content of fish due to Zn exposure, although crude

protein and total lipid contents decreased significantly with increasing Zn concentration (P\ 0.05; Table 4).

These observations may be due to the breakdown of those molecules as energetic substrates to cope with Zn-

induced stress metabolically (Vijayan et al. 1997). The low proteins and lipids in Zn-exposed fish may be due

to the reduced feed intake. Moreover, the loss of protein and lipid levels in the Zn-exposed fish may be due to

increased protein oxidation with Zn exposure (Cakmak et al. 2006). Palaniappan et al. (2010) reported that Zn

exposure caused important structural alteration in the existing proteins indicated by a significant reduction in

the intensities of the a-helix. They also suggested that Zn exposure causes significant alteration in the protein

secondary structure by decreasing the a-helix and increasing the b-sheet content of the gill tissues of rohita

carp, Labeo rohita. Due to the low feed intake by Zn-exposed fish, the deposited protein and lipid decreased

and vice versa. Furthermore, changes in protein and lipid contents in fish body may be linked with changes in

their synthesis and/or deposition rate in fish body (Fauconneau 1985; Abdel-Tawwab et al. 2006), or because

fish exerted more energy to challenge the Zn toxicity effect. Similar results were obtained by Mohanty et al.

(2009) who concluded that Zn accumulation in the whole body of Indian major carp increased with increasing

Zn concentration. Abdel-Tawwab et al. (2012) and (2013) found that Zn accumulations in the whole bodies of

Nile tilapia and common carp are correlated with Zn concentrations.

The concentration of the whole-body ash and Zn residue in the whole-fish body and different organs were

perhaps unsurprisingly significantly affected by Zn concentration, exposure time, and their interaction

(P\ 0.05; Table 5). For instance, Zn residues in the control fish reared for 1 week had lowest tissue con-

centrations (22.8, 24.9, 24.6, 9.5, and 96.8 lg g-1 wet weight for gills, liver, kidney, muscles, and whole body,

Table 4 Proximate chemical analysis (mean ± SE) (%; dry matter basis) of whole-body of Nile tilapia exposed to different

water-born Zn concentrations for 6 weeks

Zn concentrations (mg L-1) Moisture Crude protein Total lipids Total ash

0.0 71.9 ± 1.81 65.6 ± 1.78 a 14.8 ± 0.51 a 18.4 ± 0.47 c

3.5 72.3 ± 1.49 63.8 ± 1.35 b 12.8 ± 0.23 b 21.6 ± 0.56 b

7.0 73.8 ± 1.21 62.7 ± 1.01 b 12.4 ± 0.91 b 24.3 ± 0.83 a

Means having the same letter in the same column are not significantly different at P\ 0.05

Table 5 Changes in Zn residues (mean ± SE) (lg/g fresh weight) in different organs and whole-body of Nile tilapia exposed to

different water-born Zn concentrations for different periods

Zn concentrations (mg L-1) Gills Liver kidney Muscles Whole body

After 1 week

0.0 22.8 ± 0.74 d 24.9 ± 0.86 e 24.6 ± 0.56 e 9.5 ± 0.39 c 96.8 ± 3.93 e

3.5 42.3 ± 1.43 c 37.2 ± 0.96 d 31.3 ± 1.01 d 11.7 ± 0.67 b 178.3 ± 5.91 d

7.0 59.3 ± 1.26 b 48.4 ± 1.37 c 40.9 ± 0.98 c 12.6 ± 0.72 b 234.5 ± 4.66 c

After 6 weeks

0.0 23.6 ± 0.38 d 25.4 ± 0.47 e 25.4 ± 0.52 e 10.5 ± 0.28 bc 98.8 ± 4.96 e

3.5 56.6 ± 0.89 b 78.5 ± 2.51 b 66.4 ± 1.57 b 19.4 ± 1.24 a 265.8 ± 7.01 b

7.0 83.2 ± 2.94 a 109.5 ± 4.36 a 93.5 ± 1.71 a 20.2 ± 0.83 a 346.7 ± 8.67 a

Two-way ANOVA

Zn concentration 0.001 0.001 0.001 0.001 0.001

Exposure period (EP) 0.001 0.001 0.001 0.001 0.001

Zn conc. 9 EP 0.002 0.001 0.001 0.001 0.001

Means having the same letter in the same column are not significantly different at P\ 0.05
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respectively; Table 5). Fish exposed to 7.0 mg Zn L-1 over 6 weeks accumulated more Zn residue than other

treatments (83.2, 109.5, 95.5, 20.2, and 346.7 lg g-1 wet weight in gills, liver, kidney, muscles, and whole

body, respectively). The muscle tissue was always contained a significantly lower Zn than the other tissues

(P\ 0.05). This is consistent with Ortiz et al. (1999), Senthil Murugan et al. (2008), and Palaniappan et al.

(2010) who reported similar trends in the Sole Senegalenis, Channa punctatus, and rohita carp, respectively.

The differences in the level of accumulation in the different fish organs are primarily attributed to the

differences in the physiological role of each organ (Karuppasamy 2004). For instance, upon exposure initially

the gills tissues accumulated highest Zn levels because the gills play a significant role in metal uptake, storage,

and eventually transfer to the internal compartments via blood transport (Romanenko et al. 1986). On pro-

longed exposure, Zn concentrations in liver tissues rise; an observation ascribed to the binding of Zn to hepatic

metallothionein (Kendrick et al. 1992; Atli and Canli 2003). High Zn concentration in the kidneys of exposed

fish may be related to the role it plays in excretion. Muscle tissues accumulated least Zn residues because they

do not come in direct contact with toxicants, nor the muscle is an active site of detoxification.

Conclusion

The present study revealed that Zn exposure had a deteriorate effect on growth performance and health of Nile

tilapia. However, liver and kidney tissues are the prime sites of Zn bioaccumulation, while Zn load in muscles

tissues was low as compared to other organs.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
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